
A Single Threaded Software Architecture for

Embedded Systems

G. Andrew Mangogna

April 17, 2011
Version 1.5

c© Copyright 2009 - 2011, by G. Andrew Mangogna. Permission to copy and
distribute this article by any means is hereby granted by the copyright holder
provided the work is distributed in its entirety and this notice appears on all
copies.

Abstract

This paper is a literate program for a set of software architecture mech-

anism that constitute the run time support for a single threaded software

architecture domain that is suitable for a large class of applications found

in embedded computer systems. The document discusses and explains

all the code found in the mechanisms and, as a literate program, can be

transformed into the source code for the mechanisms.

Contents

1 Introduction 4

1.1 Scope . 5

2 Main Loop 5

3 Managing Data 9

3.1 Class Instances . 10
3.2 Instance Allocation . 12

3.2.1 mechInstCreate . 15
3.2.2 mechInstDestroy . 18

4 Managing Execution 20

4.1 State Machine Rules . 20
4.2 Event Generation . 21

4.2.1 Event Parameter Storage 22
4.2.2 Event Control Block . 23
4.2.3 Event Queuing . 26
4.2.4 Interface for Event Generation 32

1

CONTENTS 2

4.3 Delayed Events . 40
4.3.1 mechEventPostDelay . 42
4.3.2 mechEventDelayCancel 46
4.3.3 mechEventDelayRemaining 48
4.3.4 Delayed Event Queue Operations 50
4.3.5 Expired Event Queue Operations 56
4.3.6 Timing Considerations . 59

4.4 Event Dispatch . 59
4.4.1 Normal Event Dispatch 61
4.4.2 Polymorphic Event Dispatch 66
4.4.3 Creation Event Dispatch 76
4.4.4 Class Data . 77

4.5 Event Dispatch Tracing . 78
4.5.1 Trace Information . 79
4.5.2 Access to Trace Information 80
4.5.3 Tracing Strategies . 85

5 Error Handling 85

6 Asynchronous Execution 91

6.1 Simple Interrupt Priority . 91

7 Initialization 97

8 Testing 98

9 POSIX Specific Interfaces 100

9.1 POSIX Critical Sections . 100
9.2 POSIX Timing Interfaces . 102
9.3 POSIX Async Execution Interface 106
9.4 POSIX I/O Interface . 109
9.5 POSIX Suspending Execution . 115
9.6 POSIX Initialization . 118
9.7 POSIX Compilation . 119

10 ARM Cortex-M3 Specific Interfaces 119

10.1 Cortex-M3 Critical Sections . 119
10.2 Cortex-M3 Timing Interfaces . 120
10.3 Cortex-M3 Async Execution Interface 125
10.4 Cortex-M3 Suspending Execution 128
10.5 Cortex-M3 Exception Scenarios 130
10.6 Cortex-M3 Initialization . 131

LIST OF FIGURES 3

11 TI MSP430 Specific Interfaces 133

11.1 MSP430 Critical Sections . 133
11.2 MSP430 Timing Interfaces . 134
11.3 MSP430 Async Execution Interface 142
11.4 MSP430 Suspending Execution 142
11.5 MSP430 Initialization . 143

12 Source Code Organization 145

12.1 POSIX Version . 146
12.2 Cortex-M3 Version . 149
12.3 MSP430 Version . 152

13 Copyright 155

14 Index 157

List of Figures

1 Main Loop Flow Diagram . 6
2 Delayed Event Ordering . 40
3 Delayed Event Ordering After Insertion 41
4 Class Generalization Hierarchy 67
5 Complex Class Generalization Hierarchy 69
6 Simple Asynchronous Execution 92

1 INTRODUCTION 4

1 Introduction

The Software Architecture Domain has always been special in Executable UML.
It is the domain that specifies the policies for managing data and execution
for the system and is the target of model translation. Much of the work of
model translation is to generate code in the target implementation language
that weaves together the logic of the model actions with invocations of domain
operations of the Software Architecture Domain to accomplish the model se-
mantics.

This paper is a literate program for a simple Single Threaded Software Ar-
chitecture. It implements what can be considered a virtual machine that obeys
the execution rules for Executable UML. The implementation language is “C”.
The mission of a software architecture domains is to implement a set of pol-
icy decisions about how data is managed and how execution is sequenced for
any system built upon this architecture. The policy decisions made here are
oriented toward highly embedded systems that are typically deployed on very
minimal computing platforms. As we shall see, the architecture can also be run
on POSIX platforms with the primary goal being simulation of the embedded
platform.

Policy decisions intended for an embedded micro-controller based platform
are unlikely to be optimal for more conventional computing platforms. So we
make no claims of universality for this architecture. Indeed it is easy to envision
applications which would not be suitable to deploy on a single threaded archi-
tecture where there are no separately scheduled execution contexts. It should
come as no surprise then that there is not a single Software Architecture Domain
suitable for all classes of applications. That is not the point here. What we are
trying to accomplish here is to show the implementation of a set of mechanisms
for a Software Architecture Domain that does not depend upon the specifics
of an application’s functionality and is appropriate for any application whose
computational demands reasonably match the design criteria of mechanisms.

To divorce the management of data and execution from the application func-
tionality is a more radical concept than might be first recognized. In this paper
will we discuss many aspects of execution without any specific reference to what
a particular application is attempting to accomplish from a functional point of
view. This tends to make the discussion rather abstract and can make it harder
to envision how this code might be put to use in any given software applica-
tion. But remember, this code represents a run-time engine that is the final
target of translating an XUML model into a running system. We are discussing
a well encapsulated world of data and execution management that is, however
unfortunate, completely devoid of any application semantics. This notion often
makes many programmers uncomfortable in their belief that everything about
a software system is to be tailored to the specific semantics of the application
functionality.

The design of STSA is guided by the following criteria:

• There is a very limited budget for running the computing hardware. Of-

2 MAIN LOOP 5

ten this limited budget arises from limitation of supplying power to the
computing hardware or the need to minimize the costs of the hardware.
Consequently, the execution framework must closely match the facilities
directly provided by the hardware. Otherwise, providing capabilities that
are not well supported by the hardware platform implies additional soft-
ware execution that cannot be supported by the computation budget.

• Memory is very limited and typically segmented between that which is
read only and that which is read/write with the later type of memory
being particularly in short supply.

Certainly, modern computing environments do not tend to suffer from either
of these limitations. So we are purposefully targeting limited computing envi-
ronments as are found in highly embedded control systems and battery powered
systems. Often these systems are of a safety critical nature where having very
precise control over the software is essential.

1.1 Scope

This literate program discusses many concepts related the Executable UML.
There is not space here to give you all the background of this methodology.
The reader is referred to some of the many books available on Executable UML
for the necessary background [1] [2] [5] [3] [4].

2 Main Loop

Let’s jump right to the part that you are probably most interested in, the main

loop. Figure 1 (p. 6) shows a flow diagram of the main loop. The program is an
infinite loop. The mechanisms supply the required “C” program function, main.
As discussed in the introduction, all the decisions about sequencing program
execution are factored away from the application code and incorporated into
the mechanisms. After initialization, we enter the loop. The first step is to
synchronize to any asynchronous processing that has gone on. Asynchronous
processing is discussed in detail in section 6 below (p. 91), but for now we can
think of it as interrupts going off and needing to tell the rest of the program that
something has happened. The way asynchronous execution does this is to post
a function to the sync queue. This constitutes a request that the function be
invoked at the first safe opportunity during the background processing. From
the flow diagram, we see that all sync functions are removed from the sync
queue before we consider dispatching any events to a state machine. Although
there are no restrictions on what a sync function may do, typically it executes
some domain operation that results in generating events to some class instance.
Those generated events are placed on the event queue.

After the sync queue is empty, the loop then removes one event from the
event queue and dispatches it. In general, dispatching an event will cause a
state machine to transition and some state action will execute. State actions

2 MAIN LOOP 6

may cause other events to be generated. It is required that state actions leave
the domain data in a consistent state. We can now see, that outside of a state
action is a safe time to execute the synchronization functions.

Eventually, the thread of control initiated by some sync function will die out
of its own accord. Some state actions perform computations without generating
new events and eventually all the events are consumed. At that time, the sync
queue will be empty and the event queue will be empty. There is nothing more
to do and we then wait. Exactly what it means to wait is platform dependent
as we shall see.

Initialize

Sync Queue
Empty?

No Execute one
sync function

Yes

Event
Queue Empty?

No Dispatch
One Event

Yes

Wait

Figure 1: Main Loop Flow Diagram

We now examine how the general ideas of the main program flow actually
get implemented in code. By default, he mechanisms define the program entry
point given by the “C” function main. For testing it is convenient to allow the
main definition to be elsewhere and we achieve that via conditional compilation.

6 〈external test functions 6〉≡ (146 149 152) 97b ⊲

extern void stsa_main(void) ;

2 MAIN LOOP 7

7 〈main loop 7〉≡ (147 150 153)

#ifdef MECH_TEST

void

stsa_main(void)

#else

int

main(void)

#endif /* MECH_TEST */

{

mechInit() ;

for (;;) { /* Infinite Big Loop */

/*

* Empty the foreground/background sync queue.

*/

〈background sync 8〉
/*

* Dispatch one event off of the event queue.

*/

if (!mechDispatchOneEvent()) {

/*

* Check if this thread of control is complete

* and wait if there is no additional work to

* be done.

*/

mechWait() ;

}

}

}

2 MAIN LOOP 8

Not surprising, the main function is an infinite loop. After initialization,
the infinite loop is entered. First, we must perform any synchronization be-
tween asynchronous foreground execution and the single background thread.
This is described in detail in section 6 (p. 91). In most circumstances that
means executing the synchronization functions that the foreground processing
has requested. The synchronization functions are run as part of the background
processing. Also note that the sync queue is emptied before considering any
events. This design gives foreground / background synchronization a higher ef-
fective priority than the thread of control that might be generated by executing
a sync function. For most systems that synchronization is given a simple loop.

8 〈background sync 8〉≡ (7)

#ifndef __ARM_ARCH_7M__

/*

* Empty the foreground / background

* synchronization queue.

*/

while (mechInvokeOneSyncFunc()) {

; /* empty */

}

#endif /* __ARM_ARCH_7M__ */

3 MANAGING DATA 9

As we shall see below (section 10.3, p. 125), for the Cortex-M3 this synchro-
nization is not executed in the main loop but rather in an exception handler.
More on this later, but it does not change the essential characteristic that syn-
chronization occurs first before events are dispatched.

After synchronization is complete, one event is dispatched. The actions
executed upon the state transition caused when the event is delivered may very
well generate other events into the event queue. However, after each dispatched
event, we determine if there is any synchronization that must occur. In this way,
events are removed and dispatched from the event queue one at a time checking
if there are any sync functions that must be executing in between. Note that
in this design, the event queue is not placed in a critical section. Interrupts are
not allowed direct access to the event queue. Asynchronous execution has only
one method to request computation and that is the sync queue.

Eventually, we will run out of work to do1. It is then time to wait for the
next thing to come along. What it means to wait is also platform dependent.
For bare metal systems, particularly low power ones, the processor will be put to
sleep to save power. On an operating system, there are system specific means to
cause the process to sleep. The implementation must be careful in determining
that we indeed are ready to wait. We must be able to test for an empty sync
queue and wait as a single atomic action. We will see how that happens in
section 9.5 (p. 115) below.

An important thing to remember here is that this represents all the flow
of execution policy for the entire system. No part of the application code de-
termines when a state machine event is dispatched. Too many times, designs
scatter code throughout that is deciding what to do next. This code is often in-
consistent, many times just wrong and carries a large testing and maintainence
burden. It is unnecessary to do that. Careful factoring of execution sequencing
away from the application code can place all the policy decisions in a very small
amount of code. Your system may need different a policy to meet the computa-
tional demands of your applications, but that does not mean that the execution
policy must be tailored for every distinct application. Software architectures
can meet the computation requirements of large classes of applications and do
so in a manner that is independent of the subject matter of the application.

The careful reader will have already recognized that there is no way to exit
the program directly. This is in keeping with the highly embedded nature of
the class of applications for which STSA is intended. Your system may need a
way to terminate and if it does, then you should insert the termination check
just before the call to mechWait. This allows the ongoing thread of control to
complete before termination.

3 Managing Data

The STSA was designed for highly embedded systems. These types of sys-
tems often tend to be long running, i.e. the program is intended to run for

1or else we have some type of unbounded computation

3 MANAGING DATA 10

the lifetime of the system without ever stopping. This means that there is no
opportunity to restart and clean up if something goes wrong. Safety critical
systems, for example, just do not have that luxury. The long running nature
of embedded applications has led to the general notion among embedded pro-
grammers that a central system heap is a bad idea. A heap can fragment and
at critical times not have sufficient contiguous memory to allocate an essential
data structure. Whether or not use of a heap is a bad idea in these types of
systems is subject to some skepticism. I don’t know of any definitive studies,
but the conventional wisdom is well entrenched.

What is used instead is fixed, worst case allocation. It is less efficient in the
way that memory is utilized, but tends to be more deterministic in the way that
it behaves. A heap can introduce probabilistic behavior. At least with fixed
allocation and a good set of test cases, you can have reasonable assurances that
memory resources are properly allocated and released.

As you will see below, all data is allocated in fixed sized pools, the size of
which are determined at compile time. This includes internal data structures
as well as those holding the application instance data. This may take some
of the non-deterministic behavior out of the allocation, but it does not make
the job of estimating the proper sizes of the memory pools any easier. This is
usually accomplished by simple characterization, i.e. testing it to failure and
determining the best size for things..

3.1 Class Instances

In order to keep track of the essential status of instances, all instance structures
include a data structure as its first member. This is the view that the mecha-
nisms take of an instance and the mechanisms cast all instance pointers to this
data type. In object oriented parlance, you can think of this as the base class
for all instances.

10 〈data types 10〉≡ (146 149 152) 12 ⊲

typedef struct mechinstance {

AllocCount alloc ;

StateCode currentState ;

struct mechclass const *instClass ;

} *MechInstance ;

Defines:
MechInstance, used in chunks 12, 14–16, 18b, 19, 24, 32–35, 38, 39, 45–50, 63, 73, 76,

and 82–84.

3 MANAGING DATA 11

The alloc member is used to determine if a particular storage slot is cur-
rently in use. If alloc is 0, then the slot is free. A non-zero value indicates
that an instance is allocated to that slot. This member also plays an important
role in detecting the event-in-flight error as we shall see below (see section 4.4.1,
p. 66). A small 8-bit quantity is sufficient for this member.

11a 〈base types 11a〉≡ (146 149 152) 11b ⊲

typedef uint8_t AllocCount ;

Defines:
uint8 t, used in chunk 136.

The currentState member holds the value of the current state for the in-
stance.

11b 〈base types 11a〉+≡ (146 149 152) ⊳ 11a 21 ⊲

typedef uint8_t StateCode ;

Defines:
uint8 t, used in chunk 136.

As we see from the data type, states are held in 8 bit quantities and this
limits the number of states that a class may have to 253. Why 253? Two of the
values in the state type are used to indicate if a given event is to be ignored or
treated as a fatal error.

11c 〈constants 11c〉≡ (146 149 152) 22 ⊲

#define MECH_STATECODE_IG UINT8_MAX

#define MECH_STATECODE_CH (UINT8_MAX - 1)

Defines:
MECH STATECODE CH, used in chunk 63.
MECH STATECODE IG, used in chunk 63.

3 MANAGING DATA 12

We use the two highest values of a StateCode to indicate ignored and can’t
happen, respectively. The semantics of ignoring an event and deeming an event
as not possible to happen are explained below. In practice, 253 states would
be an enormous state model and clear indication that you should rethink your
design.

The instClass member is a pointer to a data structure that defines the
class. The class data structure is discussed below (section 4.4.4, p. 77). For
now, we can think of it as the data structure that holds all the information that
is invariant for the class, i.e. the information that applies to all instances of the
class.

3.2 Instance Allocation

There are three ways to create an instance:

1. Create an instance as part of an initial instance population.

2. Create an instance synchronously to the execution of some action by in-
voking a function.

3. Create an instance asynchronously to the execution of some action by
sending an event.

The initial instance population consists of defining the storage pool for the
class to have initial values. In “C” this is nothing more than defining an array
with initializers, since we use simple “C” arrays as the storage pools. This can
be a tedious undertaking, but the mechanisms provide no support for these def-
initions since this is really a compile time undertaking. Tools such as pycca2

can significantly ease the tedium. In this section we are going to discuss syn-
chronous instance creation. This is instance creation by a direct function invo-
cation. Later we will discuss asynchronous instance creation which is instance
creation by generating an event.

Instance allocation also supports a very simplified notion of construction
and destruction for the instances. This is no where near as complicated or full
featured as something in C++. Constructors and destructors take no arguments
other than a pointer to the instance.

12 〈data types 10〉+≡ (146 149 152) ⊳ 10 13 ⊲

typedef void (*InstCtor)(MechInstance) ;

typedef void (*InstDtor)(MechInstance) ;

Defines:
InstCtor, used in chunk 13.
InstDtor, used in chunk 13.

Uses MechInstance 10.

2See http://tcl-cm3.sourceforge.net/

3 MANAGING DATA 13

It is primarily useful for when the instance has a more complicated data
structure as an attribute. If you need to do complicated construction of in-
stances, the preferred method is to do that with an instance based operation or
as part of a state action for an asynchronously created instance.

To support managing a pool of class instances, an Instance Allocation

Block, or IAB for short, data structure is used to keep track of the memory
pool.

13 〈data types 10〉+≡ (146 149 152) ⊳ 12 23a ⊲

typedef struct installocblock {

void *storageStart ;

void *storageFinish ;

void *storageLast ;

AllocCount allocCounter ;

size_t instanceSize ;

InstCtor construct ;

InstDtor destruct ;

} *InstAllocBlock ;

Defines:
InstAllocBlock, used in chunks 14, 16–19, and 77b.

Uses InstCtor 12 and InstDtor 12.

3 MANAGING DATA 14

What we need is a data structure that can find the bounds of the pool.

storageStart A pointer to the beginning of the memory where the instance
storage pool is located. Typically this is an array allocated to hold the
instances of a class.

storageFinish A pointer to one element beyond the end of the instance storage
pool for the class. This pointer may not be dereferenced, of course, but
provides the boundary marker for the end of the pool.

storageLast A pointer to the instance that was last allocated. This is used as
the starting point for allocating the next instance.

instanceSize The number of bytes of memory occupied by an instance.

construct A pointer to a constructor function. If there is no constructor de-
fined for the class, then the value of this member may be set to NULL.

destruct A pointer to a destructor function. If there is no destructor defined
for the class, then the value of this member may be set to NULL.

As we shall see, the underlying allocation algorithm is a simple linear search.

14 〈instance functions 14〉≡ (147 150 153) 16 ⊲

static MechInstance

mechInstFindSlot(

MechClass instClass)

{

assert(instClass != NULL) ;

InstAllocBlock iab = instClass->iab ;

if (iab == NULL) {

return NULL ;

}

assert(iab->storageLast < iab->storageFinish) ;

/*

* Search for an empty slot in the pool.

*/

MechInstance inst ;

for (inst = mechInstNext(iab, iab->storageLast) ;

inst->alloc != 0 && inst != iab->storageLast ;

inst = mechInstNext(iab, inst)) {

/*

* Empty

*/

}

/*

* Check if we ended up on a slot that is not allocated.

*/

return inst->alloc == 0 ? inst : NULL ;

3 MANAGING DATA 15

}

Uses InstAllocBlock 13 and MechInstance 10.

3.2.1 mechInstCreate

The function, mechInstCreate, is used to synchronously create an instance of
a class.

15 〈external scoped functions 15〉≡ (146 149 152) 18b ⊲

extern MechInstance mechInstCreate(

MechClass instClass,

StateCode initialState) ;

Uses MechInstance 10.

3 MANAGING DATA 16

It takes as arguments:

instClass A pointer to the class structure for the instance to be created.

initialState The state number into which the instance will be placed. For
classes that do not have an associated state model this argument should
be set to 0.

The return value of the function is a pointer to the new created instance.
Since the return type of the function is MechInstance, in general it will have
to be cast to be a pointer to the correct class structure type.

16 〈instance functions 14〉+≡ (147 150 153) ⊳ 14 19 ⊲

MechInstance

mechInstCreate(

MechClass instClass,

StateCode initialState)

{

assert(instClass != NULL) ;

InstAllocBlock iab = instClass->iab ;

#ifndef NDEBUG

if (instClass->odb) {

assert(initialState < instClass->odb->stateCount) ;

}

#endif /* NDEBUG */

/*

* Search for an empty slot in the pool.

*/

MechInstance inst = mechInstFindSlot(instClass) ;

if (inst == NULL) {

mechFatalError(mechNoInstSlot, instClass) ;

}

/*

* Record where we left off for the next time around.

*/

iab->storageLast = inst ;

/*

* Mark the slot as in use.

*/

inst->alloc = mechInstIncrCounter(iab) ;

inst->currentState = initialState ;

inst->instClass = instClass ;

/*

* Run the constructor if there is one.

*/

if (iab->construct) {

iab->construct(inst) ;

3 MANAGING DATA 17

}

return inst ;

}

Uses InstAllocBlock 13 and MechInstance 10.

As we can see it is a simple linear search of the pool looking for an empty slot
to allocate. The storageLast member of the IAB is used as a starting location
for the search. This attempts to improve the search speed on the assumption
that the next free slot is most likely to be in the location after the last allocated
one. It is a fatal system error to run out of instance storage space.

Since the pool is allocated in a contiguous block of memory, we must wrap
around the iterator when it passes the end of the storage pool. That is accom-
plished with the mechInstNext function.

17 〈instance allocation helper 17〉≡ (147 150 153) 18a ⊲

static inline

void *

mechInstNext(

InstAllocBlock iab,

void *ptr)

{

ptr = (char *)ptr + iab->instanceSize ;

if (ptr >= iab->storageFinish) {

ptr = iab->storageStart ;

}

return ptr ;

}

Defines:
inline, used in chunk 98b.

Uses InstAllocBlock 13.

3 MANAGING DATA 18

It is very important to understand that a synchronously allocated instance
does not run a state action. The instance may be placed into any valid state
for the class, but as is seen above, no code is run other than the constructor.
This is by design. If you need state action code executed when an instance is
created then it is necessary to use asynchronous instance creation by generating
a creation event. Alternatively, an event can be generated to the newly created
instance immediately after it has been constructed. Both mechanisms have their
uses, although the synchronous instance creation is probably overused in many
designs since it is what most programmers are familiar with.

One other important point here. There is a counter in the IAB that is
incremented each time an instance is allocated and this value is used in the
alloc member of the instance. This is another part of the strategy to detect
an event-in-flight error. This is described further below (p. 66). The effect
of running this counter is that every instance gets a different alloc member
value (modulo 255, naturally). The increment has one little catch. You cannot
increment the counter and leave it at zero.

18a 〈instance allocation helper 17〉+≡ (147 150 153) ⊳ 17

static inline

AllocCount

mechInstIncrCounter(

InstAllocBlock iab)

{

/*

* Catch any wrap around to zero.

*/

if (++iab->allocCounter == 0) {

++iab->allocCounter ;

}

return iab->allocCounter ;

}

Defines:
inline, used in chunk 98b.

Uses InstAllocBlock 13.

3.2.2 mechInstDestroy

The function, mechInstDestroy, is used to synchronously destroy an instance.

18b 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 15 32b ⊲

extern void mechInstDestroy(

MechInstance inst) ;

Uses MechInstance 10.

3 MANAGING DATA 19

It takes a single argument:

inst A pointer to an instance to be destroyed.

Just as there was a distinction between synchronous and asynchronous in-
stance creation, there is a similar distinction for destruction. Asynchronous
destruction happens as a result of an instance entering an final state and that
is discussed further below. Here we are dealing with synchronous destruction of
an instance.

19 〈instance functions 14〉+≡ (147 150 153) ⊳ 16 90d ⊲

void

mechInstDestroy(

MechInstance inst)

{

InstAllocBlock iab = inst->instClass->iab ;

assert(iab != NULL) ;

/*

* Run the destructor, if there is one.

*/

if (iab->destruct) {

iab->destruct(inst) ;

}

/*

* Mark the slot as free.

*/

inst->alloc = 0 ;

}

Uses InstAllocBlock 13 and MechInstance 10.

4 MANAGING EXECUTION 20

Destroying an instance is a very simple matter indeed. If there is a de-
structor, it is run. The slot is free when its alloc member has a value of 0.
But beware, for designs that have complicated relationships among the classes,
instance deletion can be very complicated, requiring much care that the interde-
pendencies among classes are properly preserved. That work is not done here!
You will have to include it in your action code.

4 Managing Execution

In this section we discuss the rules and policies associated with managing the
sequencing of execution. There are two means available to an application to
control the sequencing of execution.

1. Invoke an ordinary function.

2. Generate an event to the instance of a class.

Not much needs to be said about invoking functions. Computation transfers
to the entry point and runs until the function is complete, transferring control
back to next statement of the caller. Typically, such functions are organized
into those that are associated with the domain as whole, a particular class or
instances of a class. Such organization may be helpful to the programmer, but
since they are directly supported by the implementation language, STSA does
not get involved in mediating them.

Where STSA does get involved is for those computation that must leave
off at some point, waiting for some other action in the system or the external
environment, and then resume execution maintaining the past history. This
type of execution is implemented as a state machine.

4.1 State Machine Rules

Each class that has lifecycle behavior may have a state model associated with
it and each instance of that class will have a state variable. STSA supports a
Moore type state model.

In the Moore formulation of state models, action code is associated with
states and is executed upon entry into a state. This is distinguished from the
Mealy formulation where actions are associated with the transitions and are
executed upon exiting a state. Much writing and discussion has been wasted
attempting to justify one type of state model over another. What we know is
that they are computationally equivalent, i.e. we can prove that there is no
problem that you can solve with a Moore machine that cannot also be solved
with a Mealy machine and vice versa. Whether your application is easier to
describe with one type rather than the other is something that you alone may
decide. Moore machines are the traditional formulation for Executable UML
and they have the simplest implementation structures. What we specifically
reject here is any use of hierarchical state models. They are unnecessary and

4 MANAGING EXECUTION 21

add complication that is not welcome. The power of computation in Executable
UML is derived from the interaction of simple state machines each of which is
tied to the lifecycle of a particular class. If you have some state model that is
large and complicated where you think some other kind of higher order structure
is needed, the usual reason is that you have multiple classes masquerading as
one and further refinement of your analysis is necessary.

Generally, state actions affect other computations in the domain by updat-
ing instance attribute values or by generating events to other instances. The
important distinction here is that the application code of the state actions does
not deal with actually dispatching the events nor does it control which event is
dispatched next.

4.2 Event Generation

There are three types of events:

1. Ordinary events that cause transitions in state machines.

2. Polymorphic events that are mapped at runtime across a generalization
hierarchy.

3. Creations events that support asynchronous instance creation.

We will have need to distinguish the various event types and define and
enumeration to do that.

21 〈base types 11a〉+≡ (146 149 152) ⊳ 11b 23b ⊲

typedef enum {

NormalEvent,

PolymorphicEvent,

CreationEvent

} MechEventType ;

Defines:
MechEventType, used in chunks 24, 32a, 72a, 79, and 83.

4 MANAGING EXECUTION 22

The process of generating an event involves the following steps:

1. Obtain an Event Control Block from the free pool of ECB’s.

2. Set the values of the fields in the ECB.

3. Queue the ECB for later dispatch.

4.2.1 Event Parameter Storage

Before we can talk about what an ECB contains, we need to deal first with
events that carry parametric data. In this formulation of state machines, events
may carry additional parameters. Clearly space has to be allocated for that
data. The more difficult issue is to deal with the type of the parameter data.
There are a couple of solutions, neither of which is very satisfying. We could
collect all the parameters from all the state machines in the system and create
a giant union. This would properly allocate the amount of parameter storage
required and provide a type safe manner to deal with that data. Unfortunately,
the parameters to states are scattered in very many places in a system and
gathering them together is a difficult undertaking.

Here we take the view of providing some generic parameter fields with a
fixed amount of memory and letting state actions cast that memory into the
appropriate type. Needless to say, this can also be a source of errors, but
is much easier to manage. Choose the technique that makes the most sense
for your system. In many systems, the number of states that use parametric
data is small and using a fixed size works better than might be expected. The
important point here is that events can carry data with them. Many state
machine formulations don’t support this and it is very difficult to correctly
manage memory lifetime without it. It is one of those things that you might
not use very often but it is difficult to do without when you need it.

We fix the amount of memory used for event parameter storage, allowing it
to be overridden by the compiler command.

22 〈constants 11c〉+≡ (146 149 152) ⊳ 11c 28b ⊲

#ifndef MECH_ECB_PARAM_SIZE

define MECH_ECB_PARAM_SIZE 16

#endif /* MECH_ECB_PARAM_SIZE */

4 MANAGING EXECUTION 23

Here we define a union of arrays for some common types. It is not exhaustive
(N.B. no floats or doubles).

23a 〈data types 10〉+≡ (146 149 152) ⊳ 13 61 ⊲

typedef union {

signed char cparm[MECH_ECB_PARAM_SIZE] ;

unsigned char ucparm[MECH_ECB_PARAM_SIZE] ;

unsigned short usparm[MECH_ECB_PARAM_SIZE / sizeof(unsigned short)] ;

signed short isparm[MECH_ECB_PARAM_SIZE / sizeof(signed short)] ;

unsigned uparm[MECH_ECB_PARAM_SIZE / sizeof(unsigned)] ;

int iparm[MECH_ECB_PARAM_SIZE / sizeof(unsigned)] ;

unsigned long ulparm[MECH_ECB_PARAM_SIZE / sizeof(unsigned long)] ;

signed long ilparm[MECH_ECB_PARAM_SIZE / sizeof(signed long)] ;

void *pparm[MECH_ECB_PARAM_SIZE / sizeof(void *)] ;

} EventParamType ;

Defines:
EventParamType, used in chunks 24 and 93c.

State actions may use the fields in the above union, or cast the whole thing
to a type they like better. It is necessary that the code that generates the event
and the code that consumes the event have the same idea of how the data will
be treated.

4.2.2 Event Control Block

With that diversion done, on to the Event Control Block itself. The ECB is the
primary data structure for generating and dispatching events.

First some data types. Events are reference counted and 8 bits are deemed
sufficient for that. More on reference counting ECB’s below (p. 25).

23b 〈base types 11a〉+≡ (146 149 152) ⊳ 21 23c ⊲

typedef uint8_t RefCount ;

Defines:
uint8 t, used in chunk 136.

Events are also encoded as small zero based sequential integers.

23c 〈base types 11a〉+≡ (146 149 152) ⊳ 23b 41 ⊲

typedef uint8_t EventCode ;

Defines:
uint8 t, used in chunk 136.

4 MANAGING EXECUTION 24

Event queuing is done by doubly linked lists and the links are allocated as
part of the ECB as the next and prev members. We also allocate a separate
ECB structure to use as the event queue terminus.

24 〈event data types 24〉≡ (146 149 152)

typedef struct mechecb {

struct mechecb *next ;

struct mechecb *prev ;

RefCount referenceCount ;

EventCode eventNumber ;

AllocCount alloc ;

MechEventType eventType ;

union {

MechInstance targetInst ;

MechClass targetClass ;

} instOrClass ;

MechInstance srcInst ;

MechDelayTime delay ;

EventParamType eventParameters ;

} *MechEcb ;

Defines:
MechEcb, used in chunks 26–28, 30–37, 42, 43, 47, 49–55, 57b, 59, 60, 63, 73, 76, 99c,

and 127b.
Uses EventParamType 23a, MechDelayTime 41, MechEventType 21, and MechInstance 10.

4 MANAGING EXECUTION 25

An ECB is reference counted and that count is stored in the referenceCount
member. Normally, all the reference counting is handled internally by the event
generation and dispatch code. However, it is sometimes the case that a given
event will need to be generated repeatedly. Rather than go through all the
steps of event generation, you can use the reference count to prevent an ECB
from being returned to the pool. By allocating the ECB, either from the pool
using mechEventAlloc or as an ordinary variable, and then incrementing the
reference count, the mechanisms will not return the ECB to the free pool after
the event is dispatched. This also allows the ECB to be allocated in memory
that is not in the normal ECB pool that is maintained by the mechanisms. Note
that this is an optimization that carries with it the potential for bleeding ECB
data structures and loosing them forever along with a number of other abuses
of variable lifetime. It should be used with care and certainly if you need to
generate high rate periodic events you should consider different design options
(such as dedicated hardware timers).

The eventNumber member holds the value of the event encoded as a small
non-negative number. Event numbers are ultimately used as an array index and
therefore must be encoded as zero based sequential integers. The encoding is
very tedious to keep maintained and again some tooling like the pycca program
is helpful in this regard.

The alloc member is yet another part of event-in-flight detection (see page
66). We will discuss that more below when we discuss event dispatch. For
now, this member of the ECB holds the value of the allocation counter for the
instance that is the target of the event. So when an event is generated, a copy
of the current value of the alloc member of the instance is stored in the ECB.
I’m sure you can see where this is going.

The eventType member describes which of the three types of events this
ECB is being used for. It also helps discriminate the anonymous union of
targetInst and targetClass. For normal and polymorphic events, the events
are directed at a class instance and therefore the targetInst member is used.
For creation events, the events are directed, conceptually, at a class and the
targetClass member is used.

The srcInst member records the instance pointer of the instance that gen-
erates the event. If the event is generated outside the context of an instance (e.g.
in an domain operation), then this member value is set to NULL. The srcInst

member also serves an important role in enforcing the rules for delayed events.
More on that later.

The delay member is used in delayed event generation. We discuss delayed
events in detail in section 4.3 (p. 40).

Finally, the eventParametersmember holds parametric data for this event.
Note that there is no notion of priority contained in the ECB. Some software

architectures queue events in a priority order. That is not supported here.
Frankly, if you need event priorities to make your system work, then you need
to revisit your design or look for a software architecture that supports multiple
threads of execution.

4 MANAGING EXECUTION 26

4.2.3 Event Queuing

The last step in event generation is to queue the event. In this architecture, we
do asynchronous event dispatch. This insures that the state actions are atomic.
Since a queue is used, as a state action executes and generates an event, we
know that event will not be dispatched until after the state action completes.
Therefore, there is no danger of a long complicated chain of event dispatching
cycling back around to alter the state of the instance or potentially modify some
data that the state action accesses after generating the event. The guaranteed
of atomic state action execution is very important. We now examine the code
that performs the queueing.

This code is very conventional and I’m sure you seen it or something very
much like it many times before. There are only a of operations on the queue.
We need to determine the beginning and end of the queue as event are queue
in order of generation.

26a 〈event queues 26a〉≡ (147 150 153) 26b ⊲

static inline

struct mechecb *

eventQueueBegin(

MechEcb iter)

{

return iter->next ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

26b 〈event queues 26a〉+≡ (147 150 153) ⊳ 26a 27a ⊲

static inline

struct mechecb *

eventQueueEnd(

MechEcb iter)

{

return iter ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

4 MANAGING EXECUTION 27

We need to be able to determine if a queue is empty.

27a 〈event queues 26a〉+≡ (147 150 153) ⊳ 26b 27b ⊲

static inline

bool

eventQueueEmpty(

MechEcb iter)

{

return iter->next == iter ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

And finally, we need to be able to insert and remove entries. Insertion places
the ECB pointed to by item in the queue immediately before the ECB pointed
to by at.

27b 〈event queues 26a〉+≡ (147 150 153) ⊳ 27a 27c ⊲

static inline

void

eventQueueInsert(

MechEcb item,

MechEcb at)

{

item->prev = at->prev ;

item->next = at ;

at->prev->next = item ;

at->prev = item ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

Removal simply links around the ECB pointed to by item.

27c 〈event queues 26a〉+≡ (147 150 153) ⊳ 27b 28a ⊲

static inline

void

eventQueueRemove(

MechEcb item)

{

item->prev->next = item->next ;

item->next->prev = item->prev ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

4 MANAGING EXECUTION 28

It is also convenient to move the contents of one queue to another.

28a 〈event queues 26a〉+≡ (147 150 153) ⊳ 27c 29a ⊲

static inline

void

eventQueueTransfer(

MechEcb from,

MechEcb to)

{

if (!eventQueueEmpty(from)) {

/*

* Join the head of "from" to the tail of "to".

*/

to->prev->next = from->next ;

from->next->prev = to->prev ;

/*

* Point last entry in "from" to "to"

*/

from->prev->next = to ;

/*

* Update the end of "to".

*/

to->prev = from->prev ;

/*

* Empty "from".

*/

from->next = from->prev = from ;

}

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

Like all the other data structures, there is a storage pool for ECB’s and we
define a size for it here that can be overridden on the compiler command line.
Sizing the pool for ECB’s can be difficult. It must be worst case allocation as
running out of ECB’s is a fatal system error. The pool must be sized to account
for the maximum number of events that can be in flight at the same time. This
includes delayed events, since they can be considered to be slow flying events.

28b 〈constants 11c〉+≡ (146 149 152) ⊳ 22 77a ⊲

#ifndef MECH_EVENTPOOLSIZE

define MECH_EVENTPOOLSIZE 10

#endif /* MECH_EVENTPOOLSIZE */

4 MANAGING EXECUTION 29

We must allocate the memory for the ECB storage. As usual, storage is just
an array of structures.

29a 〈event queues 26a〉+≡ (147 150 153) ⊳ 28a 29b ⊲

static struct mechecb mechECBPool[MECH_EVENTPOOLSIZE] ;

Defines:
mechECBPool, used in chunk 30.

There are four queues that are used to manage events. Note that all the
queues are initialized to be empty, i.e. their next and prev members point back
to the queue head itself.

29b 〈event queues 26a〉+≡ (147 150 153) ⊳ 29a 30 ⊲

static struct mechecb eventQueue ;

static struct mechecb delayedEventQueue ;

static struct mechecb expiredEventQueue ;

static struct mechecb freeEventQueue ;

Defines:
delayedEventQueue, used in chunks 30, 43, 47, 49, 51, 52, 54, 55, and 57b.
eventQueue, used in chunks 30, 36b, 37, 47, 55, 58, 99c, 127b, and 129.
expiredEventQueue, used in chunks 30, 47, 55, 57b, and 58.
freeEventQueue, used in chunks 30, 31, and 90b.

4 MANAGING EXECUTION 30

The eventQueue queue holds all events waiting to be dispatched. The
delayedEventQueue queue holds events that are to be delivered by the mech-
anisms at some time in the future. The expiredEventQueue holds events that
have timed out of the delayedEventQueue but have not yet been posted to the
eventQueue. Finally, the freeEventQueue queue holds those ECB’s that are
not currently begin used. From the data structures and the semantics of the
queuing, a given ECB can be on at most one of the queues at any time. Most
of the time each ECB is on exactly one of the queues, but there are short times
when ECB’s are held in local variables or they can even be held in domain
variables.

Since we have a pool of ECB’s, we need some operations to manage the pool.
We start with initialization. This places all the ECB’s in the pool onto the free
event queue.

30 〈event queues 26a〉+≡ (147 150 153) ⊳ 29b 31a ⊲

static void

mechEventInit(void)

{

assert(MECH_EVENTPOOLSIZE >= 1) ;

/*

* Initialize the ECB used as the queue terminus.

*/

eventQueue.next = eventQueue.prev = &eventQueue ;

delayedEventQueue.next = delayedEventQueue.prev =

&delayedEventQueue ;

expiredEventQueue.next = expiredEventQueue.prev =

&expiredEventQueue ;

freeEventQueue.next = freeEventQueue.prev = &freeEventQueue ;

/*

* Place all the event control blocks on the free event

* queue. Allocation occurs from there.

*/

for (MechEcb ecb = mechECBPool ;

ecb < mechECBPool + MECH_EVENTPOOLSIZE ; ++ecb) {

eventQueueInsert(ecb, &freeEventQueue) ;

}

}

Uses delayedEventQueue 29b, eventQueue 29b, expiredEventQueue 29b, freeEventQueue 29b,
MechEcb 24, and mechECBPool 29a.

4 MANAGING EXECUTION 31

Event allocation is just removing an ECB from the free list. N.B. that
running out of Event Control Blocks is fatal.

31a 〈event queues 26a〉+≡ (147 150 153) ⊳ 30 31b ⊲

static inline

MechEcb

mechEventAlloc(void)

{

if (eventQueueEmpty(&freeEventQueue)) {

mechFatalError(mechNoECB) ;

}

MechEcb ecb = freeEventQueue.next ;

eventQueueRemove(ecb) ;

ecb->referenceCount = 0 ;

return ecb ;

}

Defines:
inline, used in chunk 98b.

Uses freeEventQueue 29b and MechEcb 24.

Finally, deletion returns ECB’s to the free queue.

31b 〈event queues 26a〉+≡ (147 150 153) ⊳ 31a

static void

mechEventDelete(

MechEcb ecb)

{

assert(ecb != NULL) ;

if (ecb->referenceCount <= 1) {

eventQueueInsert(ecb, &freeEventQueue) ;

} else {

--ecb->referenceCount ;

}

}

Uses freeEventQueue 29b and MechEcb 24.

4 MANAGING EXECUTION 32

Note that ECB’s are returned to the free queue only when their reference
count goes to zero. The test, if (ecb->referenceCount <= 1), is used since
the referenceCount member is unsigned and we want to free the ECB if
its reference count is either 0 or 1 when it is passed to this function. This
allows an invocation of mechEventAlloc followed immediately by an invoca-
tion of mechEventDelete to properly free the ECB. Blindly decrementing the
referenceCount will cause it to roll over when it is 0.

4.2.4 Interface for Event Generation

Finally, we can get to functions that the mechanisms provide for a state action
to generate an event.

One step in generating an event is to fill in the ECB members. Much of that
step is common among the three types of events and we can factor that into a
constructor type function.

32a 〈event generate 32a〉≡ (147 150 153) 33a ⊲

static inline

MechEcb

mechEventCtor(

EventCode event,

MechEventType type,

MechInstance targetInst,

MechInstance srcInst)

{

MechEcb ecb = mechEventAlloc() ;

ecb->eventNumber = event ;

ecb->eventType = type ;

ecb->instOrClass.targetInst = targetInst ;

ecb->srcInst = srcInst ;

return ecb ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24, MechEventType 21, and MechInstance 10.

First we consider the step of obtaining an ECB. For normal events the
mechEventNew function is provided.

32b 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 18b 33b ⊲

extern MechEcb mechEventNew(

EventCode event,

MechInstance targetInst,

MechInstance srcInst) ;

Uses MechEcb 24 and MechInstance 10.

4 MANAGING EXECUTION 33

event The number of the event.

targetInst A pointer to the instance structure that is to receive the event.

srcInst A pointer to the instance structure that is sending the event. Events
generated outside of a class instance may set this argument to NULL.

This function returns an ECB for a normal event that has all its internal mem-
bers initialized properly.

33a 〈event generate 32a〉+≡ (147 150 153) ⊳ 32a 34a ⊲

MechEcb

mechEventNew(

EventCode event,

MechInstance targetInst,

MechInstance srcInst)

{

assert(targetInst != NULL) ;

assert(targetInst->alloc != 0) ;

assert(targetInst->instClass != NULL) ;

assert(targetInst->instClass->odb != NULL) ;

MechEcb ecb = mechEventCtor(event, NormalEvent, targetInst,

srcInst) ;

/*

* Take a copy of the alloc member for event-in-flight

* detection.

*/

ecb->alloc = targetInst->alloc ;

return ecb ;

}

Uses MechEcb 24 and MechInstance 10.

Note the assignment of the the alloc member from the instance into the
alloc member of the ECB. This is yet another part of the event-in-flight de-
tection (see page 66).

As you might expect, there is a corresponding function for each of the other
two event types.

33b 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 32b 34b ⊲

extern MechEcb

mechPolyEventNew(

EventCode event,

MechInstance targetInst,

MechInstance srcInst) ;

Uses MechEcb 24 and MechInstance 10.

4 MANAGING EXECUTION 34

event The number of the event. N.B. the event number here is the event
number of the polymorphic event as encoded for a class that serves as a
supertype in a generalization hierarchy.

targetInst A pointer to the instance structure that is to receive the event.

srcInst A pointer to the instance structure that is sending the event. Events
generated outside of a class instance may set this argument to NULL.

34a 〈event generate 32a〉+≡ (147 150 153) ⊳ 33a 35a ⊲

MechEcb

mechPolyEventNew(

EventCode event,

MechInstance targetInst,

MechInstance srcInst)

{

assert(targetInst != NULL) ;

assert(targetInst->instClass != NULL) ;

assert(targetInst->instClass->pdb != NULL) ;

MechEcb ecb = mechEventCtor(event, PolymorphicEvent,

targetInst, srcInst) ;

return ecb ;

}

Uses MechEcb 24 and MechInstance 10.

Note that the alloc member is not assigned to for polymorphic events.
This is because polymorphic events are never delivered to an instance. They
are mapped at run time to a normal event which is delivered to the instance.

34b 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 33b 36a ⊲

extern MechEcb

mechCreationEventNew(

EventCode event,

MechClass targetClass,

MechInstance srcInst) ;

Uses MechEcb 24 and MechInstance 10.

4 MANAGING EXECUTION 35

35a 〈event generate 32a〉+≡ (147 150 153) ⊳ 34a 35b ⊲

MechEcb

mechCreationEventNew(

EventCode event,

MechClass targetClass,

MechInstance srcInst)

{

assert(targetClass != NULL) ;

assert(targetClass->iab != NULL) ;

assert(targetClass->odb != NULL) ;

MechEcb ecb = mechEventAlloc() ;

ecb->eventNumber = event ;

ecb->eventType = CreationEvent ;

ecb->instOrClass.targetClass = targetClass ;

ecb->srcInst = srcInst ;

ecb->alloc = 0 ;

return ecb ;

}

Uses MechEcb 24 and MechInstance 10.

Creation events are different enough that the mechEventCtor function is not
that useful and the initialization is more easily accomplished directly.

As discussed above, ECB’s are reference counted. Internally, the mechanisms
use the function below to increment the reference count for an ECB before it is
inserted into a queue.

35b 〈event generate 32a〉+≡ (147 150 153) ⊳ 35a 36b ⊲

static inline

RefCount

mechEventIncrRef(

MechEcb ecb)

{

return ++ecb->referenceCount ;

}

Defines:
inline, used in chunk 98b.

Uses MechEcb 24.

4 MANAGING EXECUTION 36

There is no corresponding function to decrement the reference count as
mechEventDelete serves that role.

Once you have obtained an ECB initialized for the proper type of the event,
then you need to fill in any event parameter data. Frequently, there are none.
Then the ECB is ready to be placed on a queue. As mentioned before, there
is a distinction between events an instance sends to itself and those that an
instance sends to a different instance. Self directed events are placed on the
front of the event queue so that they are dispatched in preference to the non-
self directed events. It is important to place the ECB in the correct position on
the event queue, but the mechanisms provide no guarantees for this other than
the assistance of an assertion.

To queue a non-self directed event, the function mechEventPost is invoked.

36a 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 34b 36c ⊲

extern void mechEventPost(MechEcb ecb) ;

Uses MechEcb 24.

ecb A pointer to an event control block (ECB). The ECB must be the return
value from mechEventNew, mechPolyEventNewor mechCreationEventNew.

The code is very straight forward. The reference count of the ECB is incre-
mented and it is queued to the rear of the event queue.

36b 〈event generate 32a〉+≡ (147 150 153) ⊳ 35b 37 ⊲

void

mechEventPost(

MechEcb ecb)

{

mechEventIncrRef(ecb) ;

eventQueueInsert(ecb, &eventQueue) ;

}

Uses eventQueue 29b and MechEcb 24.

To queue a self directed event, the function mechEventPostSelf is invoked.

36c 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 36a 42 ⊲

extern void mechEventPostSelf(MechEcb ecb) ;

Uses MechEcb 24.

4 MANAGING EXECUTION 37

ecb A pointer to an event control block (ECB). The ECB must be the return
value from mechEventNew, mechPolyEventNewor mechCreationEventNew.

The complication that arises when posting self directed events comes from
finding where in the queue to insert the ECB. At first glance, it would seem that
we need only put the event on the front of the event queue. However, should a
state action generate two self directed events, simply placing them on the front
of the event queue would result in the events being delivered in the reverse of
the order that they were generated. It’s an unusual case, but it is simple enough
to cure by finding the first event on the event queue where the source instance
and the target instance are different and performing the insertion of the ECB
there.

37 〈event generate 32a〉+≡ (147 150 153) ⊳ 36b 90b ⊲

void

mechEventPostSelf(

MechEcb ecb)

{

assert(ecb->instOrClass.targetInst == ecb->srcInst) ;

/*

* Find the first event that is not self-directed.

*/

MechEcb iter ;

for (iter = eventQueueBegin(&eventQueue) ;

iter != eventQueueEnd(&eventQueue) ;

iter = iter->next) {

if (iter->srcInst != iter->instOrClass.targetInst) {

break ;

}

}

mechEventIncrRef(ecb) ;

eventQueueInsert(ecb, iter) ;

}

Uses eventQueue 29b and MechEcb 24.

4 MANAGING EXECUTION 38

Because the case where there are no event parameters is so common, we
provide a set of convenience functions that can be used to allocate and queue
an ECB for the various types of events and queues. In many cases this simplifies
the coding significantly.

38a 〈inline functions 38a〉≡ (146 149 152) 38b ⊲

static inline

void

mechEventGenerate(

EventCode event,

MechInstance target,

MechInstance source)

{

mechEventPost(mechEventNew(event, target, source)) ;

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10.

38b 〈inline functions 38a〉+≡ (146 149 152) ⊳ 38a 38c ⊲

static inline

void

mechEventGenerateToSelf(

EventCode event,

MechInstance target)

{

mechEventPostSelf(mechEventNew(event, target, target)) ;

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10.

38c 〈inline functions 38a〉+≡ (146 149 152) ⊳ 38b 39 ⊲

static inline

void

mechEventGeneratePolymorphic(

EventCode event,

MechInstance target,

MechInstance source)

{

mechEventPost(mechPolyEventNew(event, target, source)) ;

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10.

4 MANAGING EXECUTION 39

39 〈inline functions 38a〉+≡ (146 149 152) ⊳ 38c 45 ⊲

static inline

void

mechEventGenerateCreation(

EventCode event,

MechClass targetClass,

MechInstance source)

{

mechEventPost(mechCreationEventNew(event, targetClass,

source)) ;

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10.

4 MANAGING EXECUTION 40

4.3 Delayed Events

The concept of a delayed event is one where instead of the event begin posted to
the event queue immediately, the mechanisms are requested to post the event
at some time in the future. This implies that the mechanisms have access to
some type of timing facility by which they can know that a given amount of
time has elapsed and this implies that the mechanisms will hold on to the ECB
until that future time has arrived.

There is one significant XUML rule associated with delayed events. There
can be only one outstanding delayed event of a given event type between any
sending / receiving pair of instances (which may be the same instance). This
is another way of stating that delayed events are identified by their event name
(or numerical encoding), the target instance and the source instance. There
are a number of ways to interpret an attempt to generate what amounts to a
duplicate delayed event. It could be considered an error, but that is inconvenient
and goes against the grain of our attempts to minimize run-time errors. So the
mechanisms regard an attempt to generate a delayed event of the same name
between the same sending and receiving pair as a request to cancel the original
event and create the new one at its newly given time. This turns out to be very
convenient in practice, eliminating the need to perform checks. Cancelling and
reinstating a new event turns out to be what is required in most circumstances.

To understand delayed events, it is necessary to understand the way the de-
layed event queue is maintained. The mechanisms have a delayed event queue
where ECB’s are placed awaiting to be posted. In servicing the delayed events,
we are particularly trying to avoid doing any periodic computation. For ex-
ample, we could treat the delayed event queue as a simple list and wake up
periodically and run down the list decrementing time values and checking if any
events have expired. Such a scheme is easy to implement, but in highly embed-
ded and power sensitive application, periodic activity of this type is wasteful
and deemed inappropriate.

In this implementation, we keep the delayed event queue in time relative
order. Consider the following diagram.

Timer = 15

ECB #1
Delay = 0

ECB #2
Delay = 20

ECB #3
Delay = 35

Figure 2: Delayed Event Ordering

Here we show a conceptual timer that is counting down from 15 counts to
zero. When the timer gets to zero, ECB #1 will have expired (because its delay
value, relative to the timer, is 0) and is placed on the event queue. The timer is

4 MANAGING EXECUTION 41

then loaded with the delay value from ECB #2, namely 20. In this way, ECB
#2 will have waited for the total time of all its predecessors plus its own delay
time before being placed on the event queue.

Now consider state of the delayed event queue as originally shown in figure
2. If at this time a delayed event request, call it ECB # 4, arrives for 45, then
the state of the queue after the request is inserted is shown in figure 3.

Timer = 15

ECB #1
Delay = 0

ECB #2
Delay = 20

ECB #4
Delay = 10

ECB #3
Delay = 25

Figure 3: Delayed Event Ordering After Insertion

So ECB #4 will expire in 45 ticks because it will have waited for 15 ticks
from ECB #1, 20 ticks from ECB #2 and 10 ticks for itself. Note also, that
ECB #3 has had its delay time decreased by 10 ticks. This means that ECB
#3 will expire at the same time as it would have had the insertion not taken
place (i.e. 15 + 20 + 10 + 25 equals 15 + 20 + 35).

This design meets two important criteria; only a single source of timing
is used and there is no periodic execution activity. The cost of meeting these
criteria is the price paid to find the appropriate place in the delayed event queue
when a delayed event is requested.

There are three functions supplied for dealing with delayed events:

• Post a delayed event.

• Cancel a delayed event.

• Query the remaining time for a delayed event.

While we are talking about time, the question of what time units must be
answered. Time is specified in units of milliseconds.

41 〈base types 11a〉+≡ (146 149 152) ⊳ 23c 62a ⊲

typedef unsigned long int MechDelayTime ;

Defines:
MechDelayTime, used in chunks 24, 42, 43, 45, 46a, 48, 49, 55, 57, 102, 104–106, 122, 123,

135, 140, 141, and 147.

4 MANAGING EXECUTION 42

4.3.1 mechEventPostDelay

Posting a delayed event is just like posting a normal event, except that you must
supply the number of milliseconds from now when the event is to be delivered.

42 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 36c 46b ⊲

extern void

mechEventPostDelay(

MechEcb ecb,

MechDelayTime time) ;

Uses MechDelayTime 41 and MechEcb 24.

4 MANAGING EXECUTION 43

ecb A pointer to an event control block (ECB). The ECB must be the return
value from mechEventNew(), mechPolyEventNew()or mechCreationEventNew().

time The number of milliseconds in the future when the ECB pointed to by ecb

is posted to the event queue. Note that this is the minimum number of
milliseconds and more time may elapse before the event is actually posted.

43 〈delayed event queue 43〉≡ (147 150 153) 47 ⊲

void

mechEventPostDelay(

MechEcb ecb,

MechDelayTime time)

{

assert(ecb != NULL) ;

/*

* A delay time of 0 is valid, and the event will be

* queued immediately.

*/

if (time == 0) {

mechEventPost(ecb) ;

return ;

}

ecb->delay = mechMsecToTicks(time) ;

/*

* Stop the timing queue so we may examine it.

*/

stopDelayedQueueTiming() ;

/*

* If the event already exists, remove it.

*/

MechEcb prevEvent = findEvent(&delayedEventQueue,

ecb->srcInst, ecb->instOrClass.targetInst,

ecb->eventNumber) ;

if (prevEvent) {

removeFromDelayedQueue(prevEvent) ;

}

/*

* Insert the new event.

*/

insertIntoDelayedQueue(ecb) ;

assert(!eventQueueEmpty(&delayedEventQueue)) ;

/*

* Start the timer to expire for the first event

* on the queue.

*/

startDelayedQueueTiming() ;

}

4 MANAGING EXECUTION 44

Uses delayedEventQueue 29b, MechDelayTime 41, and MechEcb 24.

4 MANAGING EXECUTION 45

There are six main actions of this function.

1. First, a quick check is done to see if the delay time is zero. If is it, then
the event is posted immediately. Delayed events are always posted as
non-self directed events. Using a zero delay time is a “trick” that provides
a means for a thread of control the yield up the processor by posting a
delayed event directed at itself. This will place the event at the end of
the event queue allowing all other pending events to be consumed before
dispatching back to the yielding instance. The mechanism is crude, but
sometimes necessary when one is forced to use the processor for unbounded
computations (e.g. copying memory from one place to another).

2. Next, we convert the delay value from millisecond units to units of ticks. A
tick is platform specific. Computers don’t typically keep time at the lowest
level in conventional human units. However, we would like to run the
delayed event queue in system specific units to avoid as much unnecessary
conversion as we can. This conversion will be described below for each
supported platform.

3. Next, we stop the timing of the delayed event queue. More on this later
but the goal of stopping the delayed event queue timing is to freeze the
state of the queue so that we may operate on it.

4. Next we attempt to determine if there is already an event matching the
one begin posted. This enforces the rule about not having two delayed
events of the same type between the same sending / receiving pair. If one
is found then it is removed.

5. Assured of no duplicates, the new event can be inserted into the timing
queue. We will see how that happens below.

6. Finally, the timing of the delayed queue is started.

It is also convenient to define delayed event functions that generate events
that have no supplemental event data.

45 〈inline functions 38a〉+≡ (146 149 152) ⊳ 39 46a ⊲

static inline

void

mechEventGenerateDelayed(

EventCode event,

MechInstance target,

MechInstance source,

MechDelayTime delay)

{

mechEventPostDelay(mechEventNew(event, target, source),

delay) ;

}

Defines:
inline, used in chunk 98b.

Uses MechDelayTime 41 and MechInstance 10.

4 MANAGING EXECUTION 46

46a 〈inline functions 38a〉+≡ (146 149 152) ⊳ 45

static inline

void

mechEventGenerateDelayedToSelf(

EventCode event,

MechInstance target,

MechDelayTime delay)

{

mechEventPostDelay(mechEventNew(event, target, target),

delay) ;

}

Defines:
inline, used in chunk 98b.

Uses MechDelayTime 41 and MechInstance 10.

4.3.2 mechEventDelayCancel

Cancelling a delayed event is one of the more complicated delayed event oper-
ations. We must account for the various places where a delayed event may be
queued.

A delayed event may be in one of three places:

1. In the delayed event queue awaiting for the time to expire.

2. In the event queue awaiting dispatch.

3. In the expired queue awaiting to be transferred to the event queue.

We will have more to say about event dispatch below, but it is possible to
try to cancel an event after its time has expired but before it has been delivered
to the target instance. The mechanisms make the guarantee that after invoking
mechEventDelayCancel the application can be assured that the event will not
be delivered. Note that it is possible to attempt to cancel a delayed event after
it has already been delivered. Unfortunately, the mechanisms cannot turn time
backwards.

46b 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 42 48 ⊲

extern void

mechEventDelayCancel(

EventCode event,

MechInstance targetInst,

MechInstance srcInst) ;

Uses MechInstance 10.

4 MANAGING EXECUTION 47

event The number of the event.

targetInst A pointer to the instance structure that is to receive the event.

srcInst A pointer to the instance structure that is sending the event. Events
generated outside of a class instance may set this argument to NULL.

47 〈delayed event queue 43〉+≡ (147 150 153) ⊳ 43 49 ⊲

void

mechEventDelayCancel(

EventCode event,

MechInstance targetInst,

MechInstance srcInst)

{

assert(targetInst != NULL) ;

/*

* Stop delayed queue so that we may examine it.

*/

stopDelayedQueueTiming() ;

/*

* Search for the event in the delayed event queue.

*/

MechEcb foundEvent = findEvent(&delayedEventQueue,

srcInst, targetInst, event) ;

if (foundEvent) {

/*

* Removing from the delayed queue requires

* additional processing of the delay times.

*/

removeFromDelayedQueue(foundEvent) ;

} else {

/*

* If the event is not in the delayed queue, then

* search the event queue. The timer could have

* expired and the event placed in the queue.

*/

foundEvent = findEvent(&eventQueue, srcInst,

targetInst, event) ;

if (!foundEvent) {

/*

* Finally, look in the expired queue.

*/

foundEvent = findEvent(&expiredEventQueue,

srcInst, targetInst, event) ;

}

if (foundEvent) {

eventQueueRemove(foundEvent) ;

4 MANAGING EXECUTION 48

mechEventDelete(foundEvent) ;

}

/*

* We can get here, without finding the event in the

* delayed queue, event queue or expired queue.

* That’s okay, it just amounts to an expensive

* no-op and implies that the event has expired,

* was queued and has already been dispatched or

* had never been generated at all.

*/

}

startDelayedQueueTiming() ;

}

Uses delayedEventQueue 29b, eventQueue 29b, expiredEventQueue 29b, MechEcb 24,
and MechInstance 10.

Like all operations dealing with the delayed event queue, we must first put
the queue in a state that we can examine it without asynchronous timing services
modifying its state. Then we search the delayed event queue for the event to
cancel. The only complication in the implementation is the need to search the
event queue should the ECB have already been expired off of the delayed queue.
It is also the case that a delayed event will spend a short amount of time on
the expired queue, after the timer has removed it from the delayed queue, but
before the background has posted it to the to event queue. The expired queue
is a bit like being in limbo. The time for the event has passed, but we do not
access the event queue from asynchronous processing. So the background is
informed via the sync function mechanism and the events wait on the expired
queue until the background sync function is run. We will see more of this later
when we discuss timer services.

4.3.3 mechEventDelayRemaining

The remaining provided operation on delayed events is to query the amount
of time remaining for a particular delayed event. Since we hold the delayed
events in sorted order of time differences, the task of determining the amount of
remaining time involves traversing the queue and summing the time increments
of all the events in front of the event of interest. The only special case here
is what to do if we don’t find the delayed event at all. In that case, zero is
returned.

48 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 46b 57a ⊲

extern MechDelayTime

mechEventDelayRemaining(

EventCode event,

MechInstance targetInst,

MechInstance srcInst) ;

Uses MechDelayTime 41 and MechInstance 10.

4 MANAGING EXECUTION 49

event The number of the event.

targetInst A pointer to the instance structure that is to receive the event.

srcInst A pointer to the instance structure that is sending the event. Events
generated outside of a class instance may set this argument to NULL.

The algorithm for computing the remaining time is to simply walk the de-
layed event queue from the beginning, summing up the set of time delays until
we reach the ECB of delayed event.

49 〈delayed event queue 43〉+≡ (147 150 153) ⊳ 47

MechDelayTime

mechEventDelayRemaining(

EventCode event,

MechInstance targetInst,

MechInstance srcInst)

{

assert(targetInst != NULL) ;

stopDelayedQueueTiming() ;

/*

* Iterate through the delayed event time and sum all

* the delay times to give the total amount of time

* remaining for the found event.

*/

MechDelayTime remain = 0 ;

MechEcb iter ;

for (iter = eventQueueBegin(&delayedEventQueue) ;

iter != eventQueueEnd(&delayedEventQueue) ;

iter = iter->next) {

remain += iter->delay ;

if (iter->srcInst == srcInst &&

iter->instOrClass.targetInst == targetInst &&

iter->eventNumber == event) {

break ;

}

}

startDelayedQueueTiming() ;

/*

* Return the amount of time remaining for the event.

* If we didn’t find the event, the just return 0.

*/

if (iter == eventQueueEnd(&delayedEventQueue)) {

remain = 0 ;

}

return mechTicksToMsec(remain) ;

}

4 MANAGING EXECUTION 50

Uses delayedEventQueue 29b, MechDelayTime 41, MechEcb 24, and MechInstance 10.

Note that zero is returned if we did not find the event on the delayed queue.
This still does not tell us if the event has already been dispatched or might be
still in flight on the event queue or the expired queue.

4.3.4 Delayed Event Queue Operations

In this section we will look at the operations on the delayed event queue itself.
As we have seen above, the events in the delayed event queue are ordered by
relative time. Inserting and removing from the queue must keep the ECB’s in
time relative order.

First, we need some way to find an event in the delayed queue. Turns out
we will end up needing to search an arbitrary queue and so we define a function
to do just that.

50 〈delayed event helper 50〉≡ (147 150 153) 51 ⊲

static MechEcb

findEvent(

MechEcb queue,

MechInstance srcInst,

MechInstance targetInst,

EventCode event)

{

/*

* Simple iteration through the list of events

* in the queue.

*/

for (MechEcb iter = eventQueueBegin(queue) ;

iter != eventQueueEnd(queue) ;

iter = iter->next) {

if (iter->srcInst == srcInst &&

iter->instOrClass.targetInst == targetInst &&

iter->eventNumber == event) {

return iter ;

}

}

return NULL ;

}

Uses MechEcb 24 and MechInstance 10.

4 MANAGING EXECUTION 51

Now we present inserting into the delayed event queue.

51 〈delayed event helper 50〉+≡ (147 150 153) ⊳ 50 52 ⊲

static

void

insertIntoDelayedQueue(

MechEcb ecb)

{

/*

* We walk down the queue to find the correct slot.

* That slot is the first place in the queue where our

* delay value is less than the delay value at that

* place in the queue. As we walk the queue, we

* subtract the delay value of each entry we pass since

* that entry will have expired before the one being

* inserted.

*/

MechEcb iter ;

for (iter = eventQueueBegin(&delayedEventQueue) ;

iter != eventQueueEnd(&delayedEventQueue) ;

iter = iter->next) {

/*

* By keeping this comparison to be strictly less

* than, we preserve the order of event dispatch to

* match that of event generation.

*/

if (ecb->delay < iter->delay) {

/*

* We are going to insert before the entry

* pointed to by "iter". Therefore, we need to

* decrease its delay value by the amount of

* time we will cause to elapse by expiring the

* entry we are about to insert.

*/

iter->delay -= ecb->delay ;

break ;

} else {

ecb->delay -= iter->delay ;

}

}

/*

* At this point we have found our place in the queue.

* Either we are between entries or this delay was

* longer than the cumulative delays of all the ECB’s

* in the queue. Insert the ECB.

*/

4 MANAGING EXECUTION 52

eventQueueInsert(ecb, iter) ;

/*

* Since we have stored a reference to the ECB we do

* the bookkeeping.

*/

mechEventIncrRef(ecb) ;

}

Uses delayedEventQueue 29b and MechEcb 24.

Removing an entry from the queue is much simpler. The only job here is to
account for the time that the entry would have consumed had it been left in the
queue. That time must be added to its next neighbor (if there is one).

52 〈delayed event helper 50〉+≡ (147 150 153) ⊳ 51 53 ⊲

static void

removeFromDelayedQueue(

MechEcb ecb)

{

/*

* If we are not at the end of the queue, all the delay

* from the removed entry is accumulated on the next

* entry in the queue.

*/

if (ecb->next != eventQueueEnd(&delayedEventQueue)) {

ecb->next->delay += ecb->delay ;

}

/*

* Remove the ECB from the delayed queue.

*/

eventQueueRemove(ecb) ;

/*

* Return the ECB back to the pool.

*/

mechEventDelete(ecb) ;

}

Uses delayedEventQueue 29b and MechEcb 24.

4 MANAGING EXECUTION 53

Here we need a function that moves expired events from one queue to another
queue. This will be useful as delayed events change states. We know the event
is expired because its delay time will be zero.

53 〈delayed event helper 50〉+≡ (147 150 153) ⊳ 52 54 ⊲

static void

moveExpiredEvents(

MechEcb fqueue,

MechEcb tqueue)

{

/*

* Iterate through the queue looking for those entries

* that have a delay time of zero. These events need to

* be queued for dispatch.

*/

for (MechEcb iter = eventQueueBegin(fqueue) ;

iter != eventQueueEnd(fqueue) &&

iter->delay == 0 ;) {

/*

* Be careful here to advance the iterator. We

* need to do it before posting the item that the

* iterator is pointing to. Once the item is on a

* new queue, the iterator is invalid and can’t be

* used to find the next entry in the delayed event

* queue.

*/

MechEcb ecb = iter ;

iter = iter->next ;

/*

* Remove the ECB and post it to the event queue.

*/

eventQueueRemove(ecb) ;

eventQueueInsert(ecb, tqueue) ;

assert(ecb->referenceCount != 0) ;

}

}

Uses MechEcb 24.

4 MANAGING EXECUTION 54

The concept of starting the delayed event queue timing is associated with
starting the timing resource with the delay time of the event on the front of the
delayed queue. We move the delay value from the head of the delayed event
queue into the timer and zero the delay member.

54 〈delayed event helper 50〉+≡ (147 150 153) ⊳ 53 55 ⊲

static void

startDelayedQueueTiming(void)

{

if (!eventQueueEmpty(&delayedEventQueue)) {

MechEcb ecb = eventQueueBegin(&delayedEventQueue) ;

assert(ecb->delay != 0) ;

sysTimerStart(ecb->delay) ;

ecb->delay = 0 ;

}

}

Uses delayedEventQueue 29b and MechEcb 24.

4 MANAGING EXECUTION 55

An analogous operation is needed to stop the queue timing. Any remaining
time is set back into the first entry on the queue. This puts the queue into a state
where ECB’s can be inserted, deleted or summed to find the time remaining for
an event.

55 〈delayed event helper 50〉+≡ (147 150 153) ⊳ 54

static inline

void

stopDelayedQueueTiming(void)

{

if (!eventQueueEmpty(&delayedEventQueue)) {

/*

* Update the delay time on the front to reflect

* the amount of time that has elapsed since the

* timer was started.

*/

MechDelayTime remain = sysTimerStop() ;

MechEcb ecb = eventQueueBegin(&delayedEventQueue) ;

ecb->delay = remain ;

/*

* It is possible that some events expired before

* we could get the timer stopped.

*/

eventQueueTransfer(&expiredEventQueue, &eventQueue) ;

/*

* It is also possible that we stopped the timer

* just as as the timer expired. In that case we

* have to post all the zero events at the front of

* the queue. We accomplish this by just servicing

* the queue.

*/

moveExpiredEvents(&delayedEventQueue, &eventQueue) ;

}

}

Defines:
inline, used in chunk 98b.

Uses delayedEventQueue 29b, eventQueue 29b, expiredEventQueue 29b, MechDelayTime 41,
and MechEcb 24.

4 MANAGING EXECUTION 56

Conceptually, starting and stopping the queue timing moves the time value
of the first ECB on the delay queue into and out of the real timing resource
(whatever that may be). So when the the delayed event queue timing is running,
at least the first ECB on the queue will have a zero delay time. When it is
stopped, we must insure that the first queued ECB has a non-zero delay time.

There is a race condition between the background code executing stopDelayedQueueTiming()
and the timer services that may run asynchronously as an interrupt. After the
return from sysTimerStop() the timer will have been stopped and will not
cause any interrupt. However, at any time previous to that the timer interrupt
might have gone off and expired one or more events. Although a sync function
will have been posted, it will not have had an opportunity to run. So we must
make sure to transfer any expired events to the event queue. This insures that
the event generation does not get out of order.

The other complication here is that we might stop the timer just the instant
before it expired. In this case the underlying timer services might think that
there is no time left on the timer, but the timer interrupt did no actually occur.
This is the case where we just win the race as opposed to the previous situation
where we just lost the race. So, just in case, we transfer any events on the delay
queue that happen to show zero delay times to the event queue.

4.3.5 Expired Event Queue Operations

This design of delayed events uses an expired event queue. This queue is used
to hold events whose time has expired but they have not been queued. At first
this may seem like a strange design artifact. It is possible to design the timer
services without the expired event queue. One could simply expire the timer,
notify the background via a sync function and then allow background processing
to remove the expired entries from the delayed event queue directly to the main
event queue for dispatching. After the expired entries are queued, then the
timer would be restarted for the next expiration time.

Such a design is subject to problematic, unpredictable timing skew. After
the timer source has expired and posted the synchronization request, the back-
ground may not execute immediately. Either a currently executing state action
or a previously queued sync function would delay the transfer of expired events
from the delayed queue to the event queue. If there if another delayed event
to expire, we would like to start that expiration without inserting some unpre-
dictable time in between. Essentially, we would like to overlap the timing of the
next delayed event with the time it takes to complete the current activities and
execute the timer sync request.

Unfortunately, there is a price to be paid and that is to have some place to
hold the expired events while the background finishes what it may be doing and
can then run a sync function that does the transfer from the expired queue to
the event queue. It also means that we will have to provide functions that can
be called directly from asynchronous processing. All of which is necessary as we
hold to our desire not to allow access to the event queue directly from interrupt
service level.

4 MANAGING EXECUTION 57

The mechTimerExpireService function is provided for the asynchronous
timer execution to call that performs the movement of expired event from the
delay queue to the expired queue.

57a 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 48 87c ⊲

/*

* Must be invoked from interrupt service level only!

*/

extern MechDelayTime mechTimerExpireService(void) ;

Uses MechDelayTime 41.

57b 〈timer service 57b〉≡ (147 150 153)

MechDelayTime

mechTimerExpireService(void)

{

moveExpiredEvents(&delayedEventQueue, &expiredEventQueue) ;

mechSyncRequest(mechExpiredEventService) ;

MechDelayTime nextTime ;

if (eventQueueEmpty(&delayedEventQueue)) {

nextTime = 0 ;

} else {

MechEcb iter = eventQueueBegin(&delayedEventQueue) ;

nextTime = iter->delay ;

iter->delay = 0 ;

}

return nextTime ;

}

Uses delayedEventQueue 29b, expiredEventQueue 29b, MechDelayTime 41, and MechEcb 24.

4 MANAGING EXECUTION 58

The only significant thing in the algorithm is to remember here is that there
may be multiple delayed events on the front of the queue whose delay time is
zero. It is not sufficient to simply pull off the first entry on the delayed event
queue. More than one event may have been requested to expire at the the same
time.

There are two important aspects of this function.

1. The function assumes it is called from interrupt service level, i.e. it as-
sumes that it may touch the delayed and expired event queues with im-
punity since it cannot be interrupted by other code that might manipulate
the state of those queues.

2. The function returns the next time to expire. The caller is responsible for
placing that time into the timer facility if it is non-zero. If the returned
time is zero, then the timer facility is not currently needed and should
remain stopped.

Notice that the function mechExpiredEventService is queued as as sync
function to perform the last step of moving the expired event to the event
queue. The mechanisms use their own internal facilities to post this function
as a sync function. This insures that delayed event posting is no different than
any other event posting and preserves the notion that the event queues are not
accessed by asynchronous execution.

58 〈delayed event service 58〉≡ (147 150 153)

static void

mechExpiredEventService(

SyncParamRef params) /* Not used */

{

/*

* Since the expired event queue is accessed here,

* we must make sure that the timer interrupt does not

* go off.

*/

sysTimerMask() ;

eventQueueTransfer(&expiredEventQueue, &eventQueue) ;

sysTimerUnmask() ;

}

Uses eventQueue 29b, expiredEventQueue 29b, and SyncParamRef 94a.

4 MANAGING EXECUTION 59

4.3.6 Timing Considerations

With timing being such a common activity in programming, there are very
many system specific situations that arise in obtaining timing services on any
particular platform. When running on top of an operating system, it will provide
the necessary timing services. Unfortunately, the interface to those services
varies from OS to OS. On bare metal platforms, generally you will have to get
timer peripherals and interrupts involved. We will do what we can here to factor
away the essential logic from the platform specific, but note that getting delayed
event services running on any particular platform will require some additional
work.

We will try to make as few assumptions about the available timing services
of the platform. Here are the constraints on the timing services:

• The is only a single source of timing. That timing source allows us to
specify some time value to it and it will respond with some notification
when the given time has elapsed.

• It is possible to stop the timing and determine how much time remains
before it expires.

• It is not acceptable to execute code periodically that does nothing. This
is to account for battery powered devices that cannot afford to wake up
and check a timing queue only to find out that there is nothing to do.
Activity must be strictly event driven and that implies that we can get
positive notification when a time period has elapsed.

4.4 Event Dispatch

Finally, we arrive at the point where we can discuss event dispatching. Up until
this time, we have been concerned with generating events, i.e. queuing events
to be delivered. Now we examine the means by which events are delivered to
target instances.

As we discussed above, there are three types of events. Naturally enough,
we provide separate functions to dispatch each type of event.

59 〈event dispatch 59〉≡ (147 150 153) 60a ⊲

static void dispatchNormalEvent(MechEcb) ;

static void dispatchPolyEvent(MechEcb) ;

static void dispatchCreationEvent(MechEcb) ;

Uses MechEcb 24.

4 MANAGING EXECUTION 60

We use a simple table to resolve the function selection at run time.

60a 〈event dispatch 59〉+≡ (147 150 153) ⊳ 59 60b ⊲

static void (* const ecbDispatchFuncs[])(MechEcb) = {

dispatchNormalEvent,

dispatchPolyEvent,

dispatchCreationEvent,

} ;

Uses MechEcb 24.

The general function to dispatch an event just selects the specific dispatch
function based on the event type.

60b 〈event dispatch 59〉+≡ (147 150 153) ⊳ 60a 63 ⊲

static void

mechDispatch(

MechEcb ecb)

{

ecbDispatchFuncs[ecb->eventType](ecb) ;

}

Uses MechEcb 24.

4 MANAGING EXECUTION 61

In the sections below, we consider the dispatch of each particular event type.

4.4.1 Normal Event Dispatch

Far and away the most common activity is to dispatch a normal event to a state
machine. We call these event types normal only to distinguish them from the
more complicated polymorphic and creation event types.

Dispatching an event in its simplest terms involves using the current state
of the instance and the event number contained in an ECB as indices into the
transition matrix. The transition matrix is the same for all instances of a class.
The entry in the transition matrix is the new state to which a transition is to
be made. There are a few complications such as the need to account for ignored
and can’t happen events.

Ignored events cause no transition. Events that are ignored can be thought
of as an optimization on the state transition graph. Ignored events can be
handled by adding a new state to which the ignored event makes a transition
and that new state has all the other outbound transitions that the original state
had. Clearly, having the concept of ignored events saves much clutter in the
state transition graph.

When the analyst considers a transition to be a logical impossibility, then
it is declared as a can’t happen event. In the STSA, a can’t happen transition
is treated as a fatal system error. This is a policy decision of the architecture,
so don’t be confused that can’t happen means shouldn’t happen or has a low

probability of happening. In this architecture, can’t happen means absolutely
impossible to happen and if it does happen then there has been a tear in the
space / time continuum and the only course available is to give up and declare
a fatal error.

The data structure used for normal event dispatch is called an Object Dis-
patch Block. Each class that has a state machine must supply an ODB. Below
we will see how all this ties together. For now, we discuss the data structure
and how it is used.

61 〈data types 10〉+≡ (146 149 152) ⊳ 23a 71 ⊲

typedef struct objectdispatchblock {

DispatchCount stateCount ;

DispatchCount eventCount ;

StateCode const *transitionTable ;

PtrActionFunction const *actionTable ;

bool const *finalStates ;

} const *ObjectDispatchBlock ;

Uses PtrActionFunction 62b.

4 MANAGING EXECUTION 62

The state transition matrix is pointed to by the transitionTablemember.
The dimensions of the table are given by the stateCount and eventCount

members.

62a 〈base types 11a〉+≡ (146 149 152) ⊳ 41 62b ⊲

typedef uint8_t DispatchCount ;

Defines:
uint8 t, used in chunk 136.

The 8 bit limit for counting is sufficient. Large state machines are definitely
a sign of a weak design.

The transition table is in state major order, i.e. the current state is used
to index conceptual rows and the event number is used to index conceptual
columns. The dimensions are captured in the ODB to allow run time bounds
checking during event dispatch.

The basic transition algorithm is to use the current state of an instance and
the event number of an event as the indices into the transition matrix. The
entry in the transition matrix is the new state. Notice the very simple data
structures required for Moore state machines.

The new state is used as an index into the actionTable. The action table
is an array of function pointers to the action associated with each state.

62b 〈base types 11a〉+≡ (146 149 152) ⊳ 62a 70a ⊲

typedef void ActionFunction(void *const, void *const) ;

typedef ActionFunction *PtrActionFunction ;

Defines:
PtrActionFunction, used in chunks 61 and 63.

4 MANAGING EXECUTION 63

Since Moore state machines associate the action with the state, that code
segment is supplied as a function matching the prototype above. The first
argument is a pointer to the instance receiving the event. It is void typed and
state actions are expected to recover the correct type by casting the pointer to
the be of the proper instance data structure. The second argument is a pointer
to the event parameters. Again, the correct type is recovered in the state action
by an appropriate case. Notice that assigning back into event parameters does
not make any sense as the parameter values are discarded after the state action
completes.

One other feature of the state machine dispatch rules regards final states.
A state may be marked as final and if so, then the mechanisms will cause the
instance to be destroyed when the state action is completed. The finalStates
member points to an array, indexed by state number, that specifies if a particular
state is indeed a final state. As is frequently the case, the class may have no
final states. In this case, finalState may be NULL to save the storage of the
final state booleans.

63 〈event dispatch 59〉+≡ (147 150 153) ⊳ 60b 73 ⊲

static void

dispatchNormalEvent(

MechEcb ecb)

{

MechInstance target = ecb->instOrClass.targetInst ;

ObjectDispatchBlock db = target->instClass->odb ;

/*

* Test for corruption of the current state

* or event number.

*/

assert(db->stateCount > target->currentState) ;

assert(db->eventCount > ecb->eventNumber) ;

/*

* Check for the "event-in-flight" error. This occurs

* when an instance is deleted while there is an event

* for that instance in the event queue. For this

* architecture, such occurrences are considered as

* run-time detected analysis errors.

*/

if (target->alloc != ecb->alloc) {

mechFatalError(mechEventInFlight, ecb->srcInst,

target, ecb->eventNumber) ;

}

/*

* Fetch the new state from the transition table.

*/

StateCode newState = *(db->transitionTable +

4 MANAGING EXECUTION 64

target->currentState * db->eventCount +

ecb->eventNumber) ;

ifdef MECH_SM_TRACE

/*

* Trace the transition.

*/

traceNormalEvent(ecb->eventNumber, ecb->srcInst,

ecb->instOrClass.targetInst, target->currentState, newState) ;

endif

/*

* Check for a can’t happen transition.

*/

if (newState == MECH_STATECODE_CH) {

mechFatalError(mechCantHappen, target,

target->currentState, ecb->eventNumber) ;

} else if (newState != MECH_STATECODE_IG) {

/*

* Check for corrupt transition table.

*/

assert(newState < db->stateCount) ;

/*

* We update the current state to reflect the

* transition before executing the action for the

* state.

*/

target->currentState = newState ;

/*

* Invoke the state action if there is one.

*/

PtrActionFunction action = db->actionTable[newState] ;

if (action) {

action(target, &ecb->eventParameters) ;

}

/*

* Check if we have entered a final state. If so,

* the instance is deleted.

*/

if (db->finalStates && db->finalStates[newState]) {

mechInstDestroy(target) ;

}

}

/*

* Return the ECB to the pool.

*/

mechEventDelete(ecb) ;

}

4 MANAGING EXECUTION 65

Uses MECH STATECODE CH 11c, MECH STATECODE IG 11c, MechEcb 24, MechInstance 10,
and PtrActionFunction 62b.

4 MANAGING EXECUTION 66

The processing for dispatching a normal event follows directly from the def-
initions. After the check for an event-in-flight error, we perform the indexing
into the transition matrix. The indexing expression results from the need to
treat a linear set of bytes as a two dimensional matrix. We can’t type it any dif-
ferently since we have different sized transition matrices for each different state
machine. After obtaining the new state, we must determine if we are actually
going to make a transition or if the event is to be ignored or considered a fatal
error. Assuming that we are transitioning, then the associated state action is
found and executed. Note that empty state actions may be dispensed with and
a NULL inserted into the action table. After the action, we check if the instance
entered a final state.

We are finally in a position to explain the event-in-flight error in detail. The
mechanisms detect only one analysis error at run time, the delivery of an event
to an instance that has been deleted. Because events are queued, it is possible
for an event to be generated for an instance and then while the event is on the
queue awaiting to be delivered, the target instance is deleted by some other
action code executing. For a single threaded architecture, this is considered an
analysis error. In essence this should never happen! The model is responsible
for insuring that instance deletion is accomplished only after there are no events
awaiting to be delivered. However, it can happen and the mechanisms detect
and catch this.

A significant difficulty arises in systems that use distinct memory pools for
the instances of each class. If an instance is destroyed and another one created,
they may very well end up in exactly the same array slot and therefore have
exactly the same instance pointer value. So, a pathological case where an event
is generated for an instance, the instance is deleted and then re-created while
the event is queued could end up delivering the event to the newly recreated
instance. Quite the wrong thing to do.

The strategy used here is to vary the number in the alloc field of the instance
each time it is allocated. Then a copy of the alloc field is placed in the ECB
when the event is queued. When dispatched, the values of the alloc fields in
the two structures must match or else the target instance has been destroyed
and re-created in the same memory slot. Of course, the observant reader will
have seen that in the case where the target instance is destroyed and recreated
254 times while the event is queued will result in the event being dispatched to
the wrong instance. This is considered such a remote possibility as to be of no
practical concern.

4.4.2 Polymorphic Event Dispatch

Polymorphic events in their full generality can be complex, but they are based on
a simple idea. In fact, there is nothing going on in the dispatch of polymorphic
events that could not otherwise be handled in the action code of state. So,
polymorphic events must be considered an optimization, but a very convenient
and significant one.

Polymorphic events arise the context of a generalization hierarchy where the

4 MANAGING EXECUTION 67

subtype classes exhibit different behavior when responding to the same event.
Consider the class diagram in figure 4.

S

B CA

Figure 4: Class Generalization Hierarchy

This figure represents a complete, disjoint partitioning of the instances of S
into three subsets, namely the instances of A, B and C. Also suppose that each
subtype has a state model and that each of those state models responds to a
common set of events, Es. From the point of view of some arbitrary instance
that is generating one of the Es events to one of the subtypes of S, it is much
more convenient to think of generating an event to an instance of S since we
know that for each instance of S there is is exactly one instance of either A, B
or C. The difficulty arises in that, a priori, we do not know which particular
subtype instance is related to the instance of S to which we are generating the
event. Thus to generate an event to an instance of S that will ultimately be
dispatched to one of the subtype instances implies that that we must determine
which particular subtype is related to S at the time that the event is dispatched.

Conceptually, determining which subtype is related to a particular instance
of a supertype is not difficult. One is required to traverse the relationship
from the supertype to each subtype, stopping when the related subtype set is
not empty. Beyond the problem of sprinkling a large amount of generically
the same code throughout the state actions, such code is very fragile since
adding or removing a subtype requires recoding the supertype to subtype queries
for each such event generation. Since the system knows what the subtypes
of any generalization are, polymorphic event dispatch is a factoring into the
software architecture of the determination of the currently related subtype and
the subsequent mapping of the polymorphic event into an event in the subtype.

Despite the fact that conceptually polymorphic event dispatch is simply the
mapping of a polymorphic event into a normal event of the currently related
subtype, the full set of rules and implications of polymorphic events is rather
daunting.

• Associating polymorphic events with a supertype does not imply that the
supertype has no state behavior of its own. A supertype may have a state
machine and polymorphic events since generating a polymorphic event to
a supertype does not result in any behavior in the supertype.

4 MANAGING EXECUTION 68

• A given supertype class may be the supertype of multiple generalization
hierarchies. In this case, generating an event to an instance of such a
supertype will cause an event to be generated down all hierarchies for
which the class is a supertype. In this way, a single event generated may
turn into multiple events being dispatched.

• The state machine for a subtype class may respond to normal events that
are not part of the polymorphic event set associated with the generaliza-
tion hierarchy. Such events may be generated directly to instances of the
subtype class or they may be self generated.

• A class that is a subtype may also be a supertype of another generalization
hierarchy, i.e. the depth of a generalization hierarchy may be greater than
one. Such a mid-level class may have new polymorphic events associated
with the generalization hierarchy for which it is the supertype. Also a mid-
level class may delegate polymorphic events associated with its subtype
role to any hierarchy for which it serves as a supertype.

• All leaf classes, i.e. subtype classes which are not the supertype of an-
other hierarchy, must consume as normal events all polymorphic events
delegated down the hierarchy to them. It is sufficient to ignore or deem
an event as can’t happen, but polymorphic events must be ultimately
mapped to normal events.

To illustrate some of these rules, consider the more complicated generaliza-
tion hierarchy shown in figure 5. Assume that the polymorphic events, E1S0
and E2S0 are associated with class S0. Generating E1S0 to an instance of S0

will result in an event being dispatch down both the R1 and R4 hierarchies.
Class S11, for example, may consume E1S0 as a normal event or may delegate
it to be dispatched polymorphically to its subtypes, S21 and S22. Further,
either classes S11 or S12 may associate additional polymorphic events to the
R2 and R3 hierarchies, respectively. Eventually and regardless of where in the
hierarchy they are introduced, all the polymorphic events must map to normal
events in the leaves or be consumed as normal events by the instances of the
intermediate classes. Also note that S0 may or may not have its own state ma-
chine. The fact that it has polymorphic events does not necessarily imply that
it has an associated state machine. It does imply that at least the leaf classes
of the hierarchy do have an associated state machine.

Generalization Relationship Storage

There are two fundamental steps in dispatching a polymorphic event:

1. Determining which subtype instance is currently related to a supertype
instance.

2. Mapping the polymorphic event encoding in the supertype to an event
encoding in the subtype.

4 MANAGING EXECUTION 69

S21 S22 S31 S32

R2

S11

R3

S12

R1

S0

R4

S41 S42

Figure 5: Complex Class Generalization Hierarchy

4 MANAGING EXECUTION 70

In order to accomplish the first step, the mechanisms have know how the gen-
eralization relationship is stored in the instances. The mechanisms support two
different schemes of storing the generalization relationship, either as a pointer
reference or as a union.

Both relationship storage techniques have their uses and we will not discuss
the pros and cons of one choice over another here. If the generalization relation-
ship is stored as a reference, then the supertype instances must must contain
an instance pointer to a subtype. If the generalization relationship is stored as
a union, then the supertype instances are presumed to have a member that is a
union of the data types of all the subtypes of the generalization hierarchy. This
distinction is an attribute of the class and is encoded in an enumerated data
type.

70a 〈base types 11a〉+≡ (146 149 152) ⊳ 62b 70b ⊲

typedef enum {

PolyReference,

PolyUnion

} PolyStorageType ;

Defines:
PolyStorageType, used in chunk 71.

It is also necessary to store in the supertype instance some encoding of
the subtype to which it is currently related. This is just a simple zero based,
sequential number that is associated with the subtypes of the hierarchy.

70b 〈base types 11a〉+≡ (146 149 152) ⊳ 70a 70c ⊲

typedef uint8_t SubtypeCode ;

Defines:
uint8 t, used in chunk 136.

As we will see, if we can locate where in the supertype instance structure
the subtype encoding and the subtype reference or union are located, then we
can determine the type of the subtype instance to which a particular supertype
instance is related. To do that we assume that the there is a data type that
can hold the byte offset from the beginning of the supertype instance structure
to the required information. As you can probably imagine, this will be a tricky
piece of code since it must pick out information from an arbitrary data structure
in a generic fashion.

70c 〈base types 11a〉+≡ (146 149 152) ⊳ 70b 86 ⊲

typedef unsigned short int AttributeOffset ;

Defines:
AttributeOffset, used in chunk 71.

4 MANAGING EXECUTION 71

Polymorphic Event Mapping

We now turn our attention to the actual mapping of polymorphic events. The
mapping is analogous to the mapping of current state and event to a new state
for normal event dispatch. For polymorphic events, the mapping is from subtype
code of the currently related subtype and polymorphic event number to a new
event. The data structure required for this is given by:

71 〈data types 10〉+≡ (146 149 152) ⊳ 61 72a ⊲

typedef struct hierarchydispatch {

PolyStorageType refStorage ;

AttributeOffset subCodeOffset ;

AttributeOffset subInstOffset ;

DispatchCount subtypeCount ;

struct polyeventmap const *eventMap ;

} const *HierarchyDispatch ;

Uses AttributeOffset 70c and PolyStorageType 70a.

4 MANAGING EXECUTION 72

refStorage The refStoragemember determines if the generalization relation-
ship is stored in reference form or in union form.

subCodeOffset The subCodeOffset member holds the byte offset from the
beginning of the instance structure where the encoding for the currently
related subtype is held.

subInstOffset The subInstOffset member holds the byte offset from the
beginning of the instance structure where either a pointer to a subtype is
stored or the union for the subtypes is located.

subtypeCount The subtypeCount member holds the number of distinct sub-
types that there are for this generalization relationship. This value is used
for run-time checks.

eventMap The eventMap member is a pointer to the mapping of polymorphic
events for the hierarchy. This mapping is indexed by major order by
subtype code and in minor order by polymorphic event number.

A key realization here is that as we are mapping down a hierarchy a given
polymorphic event may be mapped into a normal event where it will be con-
sumed by the state machine of the class or it may be delegated further down
the hierarchy. To be further delegated implies that a polymorphic event will be
mapped into yet another polymorphic event to be further mapped in a subse-
quent dispatch. Thus the entries in the eventMap matrix contain both a new
event number and an indication of the type of the new event.

72a 〈data types 10〉+≡ (146 149 152) ⊳ 71 72b ⊲

typedef struct polyeventmap {

EventCode event ;

MechEventType eventType ;

} const *PolyEventMap ;

Uses MechEventType 21.

Now we can tie it all together. A supertype class that has associated poly-
morphic events must supply a Polymorphic Dispatch Block (PDB) to direct the
mechanisms as to how to perform the mapping of polymorphic events to normal
events.

72b 〈data types 10〉+≡ (146 149 152) ⊳ 72a 77b ⊲

typedef struct polydispatchblock {

DispatchCount eventCount ;

DispatchCount hierCount ;

HierarchyDispatch hierarchy ;

} const *PolyDispatchBlock ;

4 MANAGING EXECUTION 73

eventCount The eventCount member holds the number of polymorphic events
associated with the supertype class. Like normal events, polymorphic
events are encode as zero based sequential integers so they may be used
as array indices in the mapping process.

hierCount The hierCount member holds the number of generalization hierar-
chies that extend from the supertype class.

hierarchy The hierarchy member holds a pointer to an array of Hierarchy
Dispatch Blocks. The array contains hierCount elements.

Now we can give the code for polymorphic event dispatch.

73 〈event dispatch 59〉+≡ (147 150 153) ⊳ 63 76 ⊲

static void

dispatchPolyEvent(

MechEcb ecb)

{

PolyDispatchBlock pdb = ecb->instOrClass.targetInst->instClass->pdb ;

assert(pdb != NULL) ;

assert(ecb->eventNumber < pdb->eventCount) ;

assert(pdb->hierCount > 0) ;

/*

* Each generalization hierarchy that originates at the

* supertype has an event generated down that

* hierarchy to one of the subtypes.

*/

HierarchyDispatch hd = pdb->hierarchy ;

for (unsigned hnum = 0 ; hnum < pdb->hierCount ; ++hnum) {

/*

* The most common case is to dispatch along a

* single hierarchy. In any case, we can modify in

* place the input ECB on the last dispatched event.

*/

MechEcb newEcb ;

if (hnum == pdb->hierCount - 1) {

newEcb = ecb ;

} else {

newEcb = mechEventAlloc() ;

/*

* We set the source as the original sender.

*/

newEcb->srcInst = ecb->srcInst ;

/*

* Copy event parameters.

*/

newEcb->eventParameters = ecb->eventParameters ;

4 MANAGING EXECUTION 74

}

SubtypeCode type =

*(SubtypeCode *)((char *)ecb->instOrClass.targetInst +

hd->subCodeOffset) ;

assert(type < hd->subtypeCount) ;

PolyEventMap pem = hd->eventMap +

(type * pdb->eventCount + ecb->eventNumber) ;

ifdef MECH_SM_TRACE

/*

* Trace the transition.

*/

tracePolyEvent(ecb->eventNumber, ecb->srcInst,

ecb->instOrClass.targetInst, type, hnum,

pem->event, pem->eventType) ;

endif /* MECH_SM_TRACE */

newEcb->eventNumber = pem->event ;

newEcb->eventType = pem->eventType ;

void *subTypeRef =

(char *)ecb->instOrClass.targetInst + hd->subInstOffset ;

newEcb->instOrClass.targetInst = hd->refStorage == PolyReference ?

/*

* When the generalization is implemented via a

* pointer, we need an extra level of

* indirection to fetch the address of the

* subtype.

*/

*(MechInstance *)subTypeRef :

/*

* When the generalization is implemented by a

* union, we need only point to the address of

* the subtype as it is contained in the

* supertype.

*/

(MechInstance)subTypeRef ;

if (newEcb->eventType == NormalEvent) {

newEcb->alloc = newEcb->instOrClass.targetInst->alloc ;

assert(newEcb->alloc != 0) ;

}

mechDispatch(newEcb) ;

++hd ;

}

4 MANAGING EXECUTION 75

}

Uses MechEcb 24 and MechInstance 10.

4 MANAGING EXECUTION 76

The code loops through all of the hierarchies for which the targetInst is
a supertype. The vast majority of the time there is only one hierarchy. The
strategy used here is to reuse the ECB that was carrying the polymorphic event
as the ECB for the last hierarchy. Otherwise, if there are multiple hierarchies
additional ECB will need to be allocated. Any newly allocated ECB must carry
the same source instance and event parameter information.

The core of the algorithm is to fetch the subtype code from the instance and
use that as the row index into the polymorphic event map for the hierarchy. The
event number is then used as the column index to find the mapping entry. That
mapping entry contains a new event number and event type. The new target of
the event is then the currently related subtype instance. As discussed above, this
may be a stored as a pointer or may be a union member of the supertype instance
structure. In the first case, we fetch the pointer from its location in the supertype
structure. For the union case, the location in the supertype structure is the
beginning of the union, i.e. we down cast to the subtype member. Should the
mapped event resolve to be a normal event, then we must fill in the alloc field to
enable the event in flight detection. Finally the newly minted ECB is recursively
dispatched and the next hierarchy is considered. Recursively dispatching the
event preserves the order of delivery of the events.

As you can see here, the code to implement the dispatch is not particularly
complicated. The complications arise in supplying the data required for the
polymorphic event mapping. Again tooling is very helpful here as all the indices
and offsets must be correctly supplied.

4.4.3 Creation Event Dispatch

Fortunately, creation events are much simpler than polymorphic events. Cre-
ation event dispatch is the simple combination of instance allocation and normal
event dispatch. No additional data structures are required. The code below
shows how it is done.

76 〈event dispatch 59〉+≡ (147 150 153) ⊳ 73

static void

dispatchCreationEvent(

MechEcb ecb)

{

/*

* For creation events we must allocate an instance,

* set the state to be the creation state (by

* convention the creation state is 0).

*/

MechInstance inst = mechInstCreate(ecb->instOrClass.targetClass,

MECH_DISPATCH_CREATION_STATE) ;

ifdef MECH_SM_TRACE

/*

* Trace the transition.

*/

4 MANAGING EXECUTION 77

traceCreationEvent(ecb->eventNumber, ecb->srcInst,

inst, ecb->instOrClass.targetClass) ;

endif

/*

* Modify the event structure in place and dispatch it.

*/

ecb->instOrClass.targetInst = inst ;

ecb->eventType = NormalEvent ;

ecb->alloc = ecb->instOrClass.targetInst->alloc ;

assert(ecb->alloc != 0) ;

dispatchNormalEvent(ecb) ;

}
Uses MECH DISPATCH CREATION STATE 77a, MechEcb 24, and MechInstance 10.

The dispatch reuses the ECB that contains the creation event. A new type
is assigned and the target instance is created. The remaining fields are filled in
and the ECB is recursively dispatched.

The only concept that needs additional explanation is that of a creation
pseudo-state. Classes that have creation events have an initial pseudo-state
from which the instance can transition when the creation event is dispatched.
By convention, that state is numbered zero for convenience. The new created
instance is placed in this state and the event can then be dispatched in the same
manner as any other normal event.

77a 〈constants 11c〉+≡ (146 149 152) ⊳ 28b 93b ⊲

#define MECH_DISPATCH_CREATION_STATE 0

Defines:
MECH DISPATCH CREATION STATE, used in chunk 76.

4.4.4 Class Data

By now it should be evident that the mechanisms are completely data driven.
All the behavior of data management and execution sequencing is completely
determined by the values contained in the data structures supplied to the various
functions of the mechanisms. This is different from some software architecture
mechanisms that use ad hoc generated code from a model compiler to implement
some capabilities.

Since the behavior of all instances of a given class is the same, each class
that requires data management or has execution behavior must supply a data
structure that contains all the class invariant information.

77b 〈data types 10〉+≡ (146 149 152) ⊳ 72b 87b ⊲

typedef struct mechclass {

InstAllocBlock iab ;

ObjectDispatchBlock odb ;

PolyDispatchBlock pdb ;

} const *MechClass ;

Uses InstAllocBlock 13.

4 MANAGING EXECUTION 78

That information is a pointer to an instance allocation block, a pointer to
an object dispatch block and a pointer to a polymorphic dispatch block. Any
class that does not need a particular facility may supply NULL for that block.
Presumably not all the members of the MechClass are NULL since such classes
are pure data that has a constant population given by its initial instances and
therefore have no need to define the MechClass structure.

4.5 Event Dispatch Tracing

Debugging event driven, callback, state machine based applications can be
rather more complicated than conventional, synchronously designed code. One
instance generates an event to another instance and it can be hard to determine
the exact sequence of execution by simply examining the source code. Indeed,
part of the intent here is to factor away from the application the details of se-
quencing execution. Setting a breakpoint in the action of a state is easy enough,
the difficulties arise when trying to determine where to set a breakpoint to catch
the results of the next event dispatch. Given that many events will be flying
around a given program, it is very useful to be able to extract the set of event
dispatches in chronological order.

To help in debugging, the mechanisms can be conditionally compiled to
support tracing the event dispatch. After the code is properly compiled, a
pointer to a trace callback function may be registered and then each event
dispatched will result in the function being called with the information about
the dispatch.

It should be noted that tracing information is very primitive. Only numbers
are involved as we do not put strings into the target executable. This means that
there is substantial effort required to back translate the numbers into strings
that are meaningful to a human. Again, programs such as pycca can be very
helpful in this effort.

78 〈conditional compilation 78〉≡ (146 149 152) 87a ⊲

* If the symbol MECH_SM_TRACE is defined to the preprocessor,

* then code supporting state machine dispatch tracing is

* included in the object file.

4 MANAGING EXECUTION 79

4.5.1 Trace Information

Since there are three types of events, there are three distinct sets of information
generated when an event is dispatched. There is common information for all
events and three sets of information specific to each event type.

79 〈trace data types 79〉≡ (146 149 152) 80a ⊲

typedef struct mechtraceinfo {

MechEventType eventType ;

EventCode eventNumber ;

void *srcInst ;

void *dstInst ;

union {

struct normaltrace {

StateCode currState ;

StateCode newState ;

} normalTrace ;

struct polytrace {

SubtypeCode subcode ;

DispatchCount hierarchy ;

EventCode mappedNumber ;

MechEventType mappedType ;

} polyTrace ;

struct createtrace {

void const *dstClass ;

} creationTrace ;

} info ;

} *MechTraceInfo ;

Defines:
MechTraceInfo, used in chunk 80a.

Uses MechEventType 21.

4 MANAGING EXECUTION 80

• Data common to all event dispatch traces.

eventType The type of the event that was dispatched.

eventNumber The number of the event that was dispatched.

srcInst A pointer to the instance that was the source of the dispatched
event.

dstInst A pointer to the instance that was the target of the dispatched
event.

• Data for normal event dispatch traces.

currState The current state of the instance before the event dispatch.

newState The new state entered as a result of the transition.

• Data for polymorphic event dispatch traces.

subcode The subtype code of the currently related instance.

hierarchy The number of the hierarchy down which the event was dis-
patched.

mappedNumber The new event number to which the polymorphic event
mapped.

mappedType The new event type corresponding to mappedNumber.

• Data for creation event dispatch traces.

dstClass A pointer to the class structure for the target of the creation
event.

4.5.2 Access to Trace Information

Event tracing information is passed out of the mechanisms by having the appli-
cation register a callback function. That function takes a pointer to the trace
information as its argument.

80a 〈trace data types 79〉+≡ (146 149 152) ⊳ 79

typedef void (*MechTraceCallback)(MechTraceInfo) ;

Defines:
MechTraceCallback, used in chunks 80b and 81.

Uses MechTraceInfo 79.

The function is registered with the mechanisms by invoking:

80b 〈trace external functions 80b〉≡ (146 149 152)

extern MechTraceCallback mechRegisterTrace(MechTraceCallback) ;

Uses MechTraceCallback 80a.

4 MANAGING EXECUTION 81

The trace callback function is supplied as the argument and the previ-
ous value of the callback is returned. Tracing can be turned off by invoking
mechRegisterTrace with NULL.

81 〈event tracing 81〉≡ (147 150 153) 82 ⊲

static MechTraceCallback traceCallback ;

MechTraceCallback

mechRegisterTrace(

MechTraceCallback cb)

{

MechTraceCallback oldcb = traceCallback ;

traceCallback = cb ;

return oldcb ;

}

Defines:
traceCallback, used in chunks 82–84.

Uses MechTraceCallback 80a.

4 MANAGING EXECUTION 82

The implementation of registering a callback is simply to record the function
pointer in a variable.

For each type of event dispatch, the mechanisms call a specific function to
determine if tracing is enabled and to marshal the trace information into the
proper data structure.

82 〈event tracing 81〉+≡ (147 150 153) ⊳ 81 83 ⊲

static inline

void

traceNormalEvent(

EventCode event,

MechInstance source,

MechInstance target,

StateCode currentState,

StateCode newState)

{

if (traceCallback) {

struct mechtraceinfo trace ;

trace.eventType = NormalEvent ;

trace.eventNumber = event ;

trace.srcInst = source ;

trace.dstInst = target ;

trace.info.normalTrace.currState = currentState ;

trace.info.normalTrace.newState = newState ;

traceCallback(&trace) ;

}

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10 and traceCallback 81.

4 MANAGING EXECUTION 83

83 〈event tracing 81〉+≡ (147 150 153) ⊳ 82 84 ⊲

static inline

void

tracePolyEvent(

EventCode event,

MechInstance source,

MechInstance target,

SubtypeCode subtype,

DispatchCount hierarchy,

EventCode newEvent,

MechEventType newEventType)

{

if (traceCallback) {

struct mechtraceinfo trace ;

trace.eventType = PolymorphicEvent ;

trace.eventNumber = event ;

trace.srcInst = source ;

trace.dstInst = target ;

trace.info.polyTrace.subcode = subtype ;

trace.info.polyTrace.hierarchy = hierarchy ;

trace.info.polyTrace.mappedNumber = newEvent ;

trace.info.polyTrace.mappedType = newEventType ;

traceCallback(&trace) ;

}

}

Defines:
inline, used in chunk 98b.

Uses MechEventType 21, MechInstance 10, and traceCallback 81.

4 MANAGING EXECUTION 84

84 〈event tracing 81〉+≡ (147 150 153) ⊳ 83

static inline

void

traceCreationEvent(

EventCode event,

MechInstance source,

MechInstance target,

MechClass class)

{

if (traceCallback) {

struct mechtraceinfo trace ;

trace.eventType = CreationEvent ;

trace.eventNumber = event ;

trace.srcInst = source ;

trace.dstInst = target ;

trace.info.creationTrace.dstClass = class ;

traceCallback(&trace) ;

}

}

Defines:
inline, used in chunk 98b.

Uses MechInstance 10 and traceCallback 81.

5 ERROR HANDLING 85

4.5.3 Tracing Strategies

Clearly, tracing can generate data at a rather high rate and can be rather
intrusive upon the execution of the system. Several strategies may be used to
deal with the trace data. If possible, all the trace data can be dumped in a
raw form out a communications interface and let some other program decode
and display it. That may still be too intrusive and sometimes it is best to
filter the trace data based on the target instance pointer value. In this way you
may trace the event dispatches on only a subset of instances. Several different
filtering schemes, such as source instance or classes, can be envisioned.

Another possibility is to store trace information in a memory area in some
sort of circular queue arrangement. Then it is possible for the application to
start and stop such tracing and achieve “logic analyzer” type triggering function-
ality. The trace information can then be extracted from memory and analyzed.

You will also note that the trace information has no timing data associated
with it. This type of data is so system specific that it is left to the tracing call-
back to supply. If you have a free running cycle counter in your system, this can
be a good indicator of relative time and the trace callback function can add this
to the data set supplied by the mechanisms. Your system may also have source
of clocked timing data that can also be used as a timing reference. In either
case, augmenting the trace data with some sort of relative time information is
very valuable.

Tracing can also be used as a framework for testing. If a domain is built to
run in a testing framework where tracing is enabled, then recording all the trace
information allows one to determine the amount of transition coverage a test set
causes. The goal is to develop test sets that drive the domain by invoking the
domain interface functions with appropriate data so that all state transitions are
taken. Tracing allows the recording of what transitions a given thread of control
causes. Since in most well designed state machines, state action code is small
and does not contain complicated or intricate internal program flow, causing all
state actions to be executed is often close to complete statement coverage. As
an added benefit, state machines can be considered as directed graphs. A depth
first traversal of a directed graph can be be used to determine a spanning tree
for the graph. Traversing a spanning tree for a graph insures that all nodes in
the graph are visited and the event sequence given by the spanning tree can
guide the generation of test set data and can help to minimize the number of
test cases required to ensure adequate coverage.

5 Error Handling

Until now we have glossed over the subject of how to handle errors in the software
mechanisms. In XUML, the domains assume a perfect architecture in the sense
that no formal mechanism is provided to signal architectural errors back to
the application domains. This makes sense because the application models are
meant to be implementation independent and able to be run on a variety of

5 ERROR HANDLING 86

underlying mechanisms. However, an error policy, in much the same terms as
data and execution policies, must be put into place. The details of the error
handling policy will vary between software architectures, so it is important to
state them clearly. For the STSA, the following principles guide error handling.

• To that extent possible, the mechanisms operations should not report
errors back to the application. For implementation languages that do not
support exception handling, the usual technique of returning error codes
is not very effective. Either by accident or sloth, many error codes are
not checked. Even then the error code is checked, there is little recovery
recourse for the application. For example, it does little good to know
that we are unable to generate an event because we do not have sufficient
ECB resources when there is nothing a state action can do to free up the
required resources.

• Errors that result from exhausted resources or analysis errors detected at
run time are fatal. Exactly how fatal errors are acted upon is platform de-
pendent and may result in terminating a program or completely resetting
the system. Regardless of the consequence of a fatal error, the assumption
is that the program can no longer continue to run.

With these principles in mind, we define a set of error conditions that are
detected by the mechanism. All these conditions are fatal and are handled by
invoking a fatal error handler.

86 〈base types 11a〉+≡ (146 149 152) ⊳ 70c

typedef enum {

mechCantHappen = 1,

mechEventInFlight,

mechNoECB,

mechNoInstSlot,

mechSyncOverflow,

#ifdef __unix__

mechTimerOpFailed,

mechSignalOpFailed,

mechSelectWaitFailed,

#endif /* __unix__ */

} MechErrorCode ;

Defines:
MechErrorCode, used in chunks 88 and 147.

5 ERROR HANDLING 87

Everywhere else the mechanisms operations have been crafted to avoid error
possibilities. For example, as discussed in delayed event generation, we interpret
the attempt to generate a duplicate delayed event as wishing to cancel the
existing one and instantiate a new one. This semantic interpretation avoids
generating an error and avoids all the additional code require in state actions
that generate delayed events.

Exactly how fatal errors are handled will depend upon the specifics of how
the platform handles errors. Here we provide a default that simply prints a
message and exits. For bare metal systems, printing may not be an option and
so is included conditionally.

87a 〈conditional compilation 78〉+≡ (146 149 152) ⊳ 78 98a ⊲

* If the symbol MECH_NINCL_STDIO is defined to the preprocessor,

* then code supporting printing of fatal error messages will be

* removed from the object file.

Because fatal error handling is usually so platform specific and because of the
need to test fatal error paths, we provide the ability to delegate the consequence
of the fatal error. We also provide a simple default. So we define an interface
to the delegated error handler.

87b 〈data types 10〉+≡ (146 149 152) ⊳ 77b 93c ⊲

typedef void (*MechFatalErrHandler)(char const *, va_list) ;

Defines:
MechFatalErrHandler, used in chunk 87.

The interface is patterned after vprintf, giving a format string and a pointer
to a variable length argument list.

There is a function to call to supply an error handler. It returns the previous
value of the error handler.

87c 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 57a 90a ⊲

extern MechFatalErrHandler

mechSetFatalErrHandler(MechFatalErrHandler) ;

Uses MechFatalErrHandler 87b.

The implementation of the function is trivial.

87d 〈error handling 87d〉≡ (147 150 153) 88 ⊲

static MechFatalErrHandler errHandler ;

MechFatalErrHandler

mechSetFatalErrHandler(

MechFatalErrHandler newHandler)

{

MechFatalErrHandler prevHandler = errHandler ;

errHandler = newHandler ;

return prevHandler ;

}

Defines:
errHandler, used in chunk 88.

Uses MechFatalErrHandler 87b.

5 ERROR HANDLING 88

The mechanisms internally call mechFatalError. This function is presented
next.

88 〈error handling 87d〉+≡ (147 150 153) ⊳ 87d

static char const * const errMsgs[] = {

"no error", /* place holder */

"can’t happen transition: %p: %u - %u -> CH\n",

"event in flight error: %p -> %p %u\n",

"no available Event Control Blocks\n",

"no available instance slots: %p\n",

"synchronization queue overflow\n",

#ifdef __unix__

"interval timer operation failed: %s\n",

"signal operation failed: %s\n",

"blocking on pselect() failed: %s\n",

#endif /* __unix__ */

} ;

static void

mechFatalError(

MechErrorCode errNum,

...)

{

va_list ap ;

/*

* All hope is lost here. Make sure we don’t

* execute any asynchronous code.

*/

beginCriticalSection() ;

va_start(ap, errNum) ;

if (errHandler) {

errHandler(errMsgs[errNum], ap) ;

}

else {

ifndef MECH_NINCL_STDIO

vfprintf(stderr, errMsgs[errNum], ap) ;

endif /* MECH_NINCL_STDIO */

exit(errNum) ;

}

}

Defines:
errMsgs, never used.

Uses errHandler 87d and MechErrorCode 86.

5 ERROR HANDLING 89

As we see in the code, if an error handler has been specified, then the error
code number is converted to a format string and passed, along with the argu-
ments, to the error handler. If none has been specified, then a default vfprintf
implementation is provided as long as standard I/O is allowed. As a last resort,
exit is called and the exit code is devised from the mechanisms error code.

Avoiding Fatalities

In this error handling strategy, every mechanism detected error is fatal. Al-
though the details of the processing for fatal errors is delegated, in most systems
of the class we consider here, fatal errors usually result in a system reset. Under
the vast majority of circumstances, that is the desired behavior. However, there
are some particular circumstances where causing a fatal error is not the desired
behavior.

Consider the case where some external stimulus results in an event being
generated. If the stimulus occurs more frequently than events can be processed,
then the mechanisms will run out of event control blocks causing a fatal error.
As an example, consider the arrival of a communications packet. If somewhere
during the processing of the packet an event is generated, then if packets arrive
too fast a fatal error can be generated. In effect it would provide a means for
an external stimulus to cause the system to crash. Certainly for the case of a
communications packet, the preferred behavior would be to drop the packet and
let higher level protocol deal with the necessary retries, etc. It is then necessary
to be able to determine if generating an event would be successful.

In this section we describe functions that can be used to avoid mechanisms
requests that would exhaust an underlying resource and therefore cause a fatal
system error. It should be emphasized that these functions are not intended
for ordinary or casual use. Under the vast majority of circumstances, event
generation and other such activities should continue to assume that there are
no resources that can be consumed. System analysis and testing should then
determine the appropriate sizing for the various resource pools. The capability
described in this section is to handle unusual and extraordinary circumstances
where hardware failure or failure to abide by communications protocols could
force the system into a fatal error situation.

Note also that the alternative provided here causes the external stimulus that
could cause the fatal error condition effectively to be ignored. For some system
requirements that is not an acceptable solution. For example, consider a digital
input line that is used to generate an interrupt and that interrupt signals an
external condition monitored by hardware, say the maximum extent of motion
of physical robot arm. If this interrupt arrives at a very fast rate, one might
conclude the hardware has failed. Ignoring the interrupt might do little other
than mask a problem that should cause a fatal error condition and potentially
reset the system. The conclusion is that providing a means of avoiding fatal
error conditions is not intented to serve as an overall error handling policy.
Careful analysis and consideration is still required.

There are three internal mechanisms resources that can be exhausted.

5 ERROR HANDLING 90

• Event control blocks are used for generating and dispatching state machine
events.

• Class instances can be dynamically created and each class has its own
instance pool.

• The foreground / background synchronization queue has a fixed number of
slots and excessive synchronization requests from interrupt service routines
can fill the queue.

To determine if there is an event control block available the mechEventAvail
function may be invoked.

90a 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 87c 90c ⊲

extern bool mechEventAvail(void) ;

If mechEventAvail returns true, then an immediate invocation of mechEventNew,
mechPolyEventNew or mechCreationEventNew will not cause a fatal system er-
ror.

90b 〈event generate 32a〉+≡ (147 150 153) ⊳ 37

bool

mechEventAvail(void)

{

return !eventQueueEmpty(&freeEventQueue) ;

}

Uses freeEventQueue 29b.

The implementation is simple enough since available event control blocks are
held on a free queue.

To determine if there is an available instance slot in the storage pool for a
class, mechInstAvail may be invoked.

90c 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 90a 92 ⊲

extern bool

mechInstAvail(

MechClass instClass) ;

If mechInstAvail returns true, then an immediate invocation of mechInstCreate
will not cause a fatal error situation. N.B. this does not apply to asynchronously
created instances done via creation event. Since a creation event is queued, there
is no way to determine a priori that an instance slot will be available at the
time the event is dispatched.

90d 〈instance functions 14〉+≡ (147 150 153) ⊳ 19

bool mechInstAvail(

MechClass instClass)

{

return mechInstFindSlot(instClass) != NULL ;

}

6 ASYNCHRONOUS EXECUTION 91

The implementation is also simple, calling upon the common code used to find
an instance slot in a class storage pool.

Finally, we will defer discussing overflow of the sync queue until the next
section below on asynchronous processing.

6 Asynchronous Execution

When the main loop was discussed (p. 5), we made a brief mention of asyn-
chronous execution in the context of executing synchronization functions. It
is now time to discuss how the mechanisms deal with asynchronous execution.
First we discuss some background and then present the means used by the
mechanisms to synchronize the two execution contexts.

Until now, the discussion of data management and execution sequencing have
assumed that we have a single execution context. However, all modern computer
architectures support the concept of an interrupt. An interrupt signaled by
some external hardware causes the processor to stop executing and transfer
control to a different section of code so that immediate action can be taken on
the cause of the interrupt. After the external condition is handled, execution
can resume where it was interrupted. The need for asynchronous execution was
recognized early in computer architecture design as interaction with the external
environment is much of what makes a computer a useful machine.

The exact details of how this happens is different for every computer architec-
ture. Some computers offer very sophisticated schemes that include arbitrating
the priority of multiple competing interrupt sources. Most offer only a single
priority of interrupt processing or place the burden of prioritization on the pro-
grammer or external hardware. The STSA is intended for highly embedded
systems and, in such systems, achieving the low execution overhead is of great
value. So the model of asynchronous execution used by the mechanisms mirrors
that which is provided for directly by the hardware architecture. Techniques
for having multiple, scheduled execution contexts are very well known. None
of them is used here. Here we are only interested in a very simple model of
asynchronous execution that closely mirrors what is provided by the computing
hardware. Amazingly, this is much less restrictive than might be first imagined.

6.1 Simple Interrupt Priority

For processor architectures that only support a simple interrupt scheme (and
this includes the POSIX environment where signals serve the purpose of inter-
rupts), we can visualize the interrupt as shown in the figure below.

6 ASYNCHRONOUS EXECUTION 92

Execution Before
Interrupt

Execution After
Interrupt

Asynchronous
Execution

Figure 6: Simple Asynchronous Execution

Figure 6 shows the simple idea that the single execution context is inter-
rupted in order to run a single interrupt service. Upon completion, execution
resumes where it left off. Nesting interrupts is not forbidden, but is definitely
not encouraged. No restriction is put on what may happen at interrupt service.
This is usually a great source of error in many systems. Because the execution is
asynchronous to domain model execution, any access to the domain data struc-
tures from interrupt service must not be attempted. It is ultimately unsafe and
results in horribly difficult to detect timing windows being generated wherein
things will mysteriously and irreproducibly fail.

However, it is usually necessary for an interrupt to communicate back to
the domain models. Usually, the interrupt signals some change of condition in
the environment that has been detected by the hardware. The interrupt may
be able to do everything require to handle the situation, but more often than
not, additional computation is required to resolve what has happened. So the
mechanisms provide a way for an interrupt to request synchronization with the
running background. This is accomplished by having the interrupt service code
perform a synchronization request.

92 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 90c 93a ⊲

extern SyncParamRef mechSyncRequest(SyncFunc) ;

Uses SyncFunc 94b and SyncParamRef 94a.

6 ASYNCHRONOUS EXECUTION 93

That request is in the form of a function with optional parameters that is to
be executed at the first safe opportunity. As we saw before, the synchronization
functions are executed in between state actions to insure that the domain data
are in a coherent state.

There is a secondary form to request a background synchronization for those
cases where we do not wish to create a fatal system error condition if the sync
queue overflows.

93a 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 92 97a ⊲

extern SyncParamRef mechTrySyncRequest(SyncFunc) ;

Uses SyncFunc 94b and SyncParamRef 94a.

This function will return a NULL value if the attempt to queue the sync request
failed.

The mechanisms provide a sync queue where interrupts may place their
requests for background synchronization execution. We do this with a simple
queue that is implemented in an array. Like all resources in the mechanisms,
the storage required for the queue is fixed at compile time.

93b 〈constants 11c〉+≡ (146 149 152) ⊳ 77a

#ifndef MECH_SYNCQUEUESIZE

define MECH_SYNCQUEUESIZE 10

#endif /* MECH_SYNCQUEUESIZE */

The number of queue entries can be sized appropriately for the system.
Generally, the number of queue slots must be sized to handle any cluster of
interrupts that go off at nearly the same time.

It is necessary to provide interrupts the ability to pass parameters to the
background sync functions. This is often data that must be sampled coincident
with the interrupt in order to capture the correct external state. To avoid
problems with variable life times, data is passed by copying it into a parameter
area. Clearly, this is not a good strategy for passing a large amount of data.
In those cases, it is necessary to manage memory between the background and
the interrupts. No facilities are provided by the mechanisms to do this as it
usually must to be constructed ad hoc to suit the particular needs of the data
transfer. Usually it is sufficient to manage a pool in the background and use
the synchronization mechanism to allow interrupt service to return memory to
the pool when it is no longer needed.

For our purposes, it is only necessary to define some data structure that can
be used by the interrupt service code to place data that will be delivered to the
background function. The same considerations that were discussed for event
parameters apply for sync parameters. So we use the same strategy.

93c 〈data types 10〉+≡ (146 149 152) ⊳ 87b 94a ⊲

typedef EventParamType SyncParamType ;

Defines:
SyncParamType, used in chunk 94.

Uses EventParamType 23a.

6 ASYNCHRONOUS EXECUTION 94

When a sync function is invoked, it is actually passed a reference to its
parameters.

94a 〈data types 10〉+≡ (146 149 152) ⊳ 93c 94b ⊲

typedef SyncParamType *SyncParamRef ;

Defines:
SyncParamRef, used in chunks 58, 92–95, 106c, 107a, 126, and 142.

Uses SyncParamType 93c.

And so we can define the prototype for a sync function.

94b 〈data types 10〉+≡ (146 149 152) ⊳ 94a

typedef void (*SyncFunc)(SyncParamRef) ;

Defines:
SyncFunc, used in chunks 92–95, 106c, 107a, 126, and 142.

Uses SyncParamRef 94a.

Each element of the sync queue is a pointer to the sync function and a place
where the interrupt service code may place the values of the parameters.

94c 〈fgsync data types 94c〉≡ (147 150 153) 94d ⊲

typedef struct fgsyncblock {

SyncFunc function ;

SyncParamType params ;

} *FgSyncBlock ;

Defines:
FgSyncBlock, used in chunks 94–96, 99a, and 127a.

Uses SyncFunc 94b and SyncParamType 93c.

The sync queue is stored in an array and we use a couple of pointers to keep
track of the head and tail.

94d 〈fgsync data types 94c〉+≡ (147 150 153) ⊳ 94c

struct syncqueue {

FgSyncBlock head ;

FgSyncBlock tail ;

} ;

Uses FgSyncBlock 94c.

Following our usual pattern, we allocate storage for the sync queue entries as
an array and for the control structure that tracks the queue boundaries within
the sync queue entry array.

94e 〈sync queue 94e〉≡ (147 150 153)

static struct fgsyncblock

mechSyncQueueStorage[MECH_SYNCQUEUESIZE] ;

static struct syncqueue mechSyncQueue = {

.head = mechSyncQueueStorage,

.tail = mechSyncQueueStorage,

} ;

Defines:
mechSyncQueue, used in chunks 95 and 96.

6 ASYNCHRONOUS EXECUTION 95

There are only three operations on the sync queue. First we must be able
to determine if the queue is empty or not. Emptiness is determined when the
queue head is equal to the queue tail. For this type of queue operation, the
head is where the next entry is removed and the tail is where the next entry is
inserted.

95a 〈sync queue func 95a〉≡ (147 150 153) 95b ⊲

static inline

bool

syncQueueEmpty(void)

{

return mechSyncQueue.head == mechSyncQueue.tail ;

}

Defines:
inline, used in chunk 98b.

Uses mechSyncQueue 94e.

Inserting a function into the synchronization queue is an activity that may
only be performed from interrupt service level. N.B. that this function does not
implement a critical section around access to the sync queue.

95b 〈sync queue func 95a〉+≡ (147 150 153) ⊳ 95a 96 ⊲

static inline

SyncParamRef

syncQueuePut(

SyncFunc f,

bool fatal)

{

FgSyncBlock tail = mechSyncQueue.tail ;

if (++mechSyncQueue.tail >=

mechSyncQueueStorage + MECH_SYNCQUEUESIZE) {

mechSyncQueue.tail = mechSyncQueueStorage ;

}

if (syncQueueEmpty()) {

if (fatal) {

mechFatalError(mechSyncOverflow) ;

}

return NULL ;

}

tail->function = f ;

return &tail->params ;

}

Defines:
inline, used in chunk 98b.

Uses FgSyncBlock 94c, mechSyncQueue 94e, SyncFunc 94b, and SyncParamRef 94a.

6 ASYNCHRONOUS EXECUTION 96

Insertion happens at the tail. Incrementing the tail pointer must account for
wrapping around the array boundary. Overflow is detected as the queue being
empty after the insertion is made. This logic has the effect of consuming one
of the queue storage slots in order to detect overflow and this will need to be
accounted for in sizing the sync queue storage. The fata argument determines
if queue overflow is a fatal system error or not. This allow for dealing with sync
requests that can be ignore if it would cause a sync queue overflow. Note that
the sync queue slot is not modified until after overflow is detected. This insures
that should an error happen during development, the queue can be examined
and will be in a consistent state.

The consumer of the sync queue entries is the main loop.

96 〈sync queue func 95a〉+≡ (147 150 153) ⊳ 95b

static inline

FgSyncBlock

syncQueueGet(void)

{

FgSyncBlock head ;

beginCriticalSection() ;

if (syncQueueEmpty()) {

head = NULL ;

} else {

head = mechSyncQueue.head ;

if (++mechSyncQueue.head >=

mechSyncQueueStorage + MECH_SYNCQUEUESIZE) {

mechSyncQueue.head = mechSyncQueueStorage ;

}

}

endCriticalSection() ;

return head ;

}

Defines:
inline, used in chunk 98b.

Uses FgSyncBlock 94c and mechSyncQueue 94e.

7 INITIALIZATION 97

Since the main loop runs with interrupts enabled, obtaining a sync queue
entry must be done in a critical section. We remove entries from the head of the
queue. Otherwise, the only complexity in the code is to account for the array
storage wrap around.

7 Initialization

Finally, we must consider initialization. The main loop delegates the initializa-
tion to a single function, mechInit. We divide the initialization into two parts,
that needed for the mechanisms and that for the application.

Applications must supply a function to initialize hardware and one to ini-
tialize the domains in the application.

97a 〈external scoped functions 15〉+≡ (146 149 152) ⊳ 93a

extern void sysDeviceInit(void) ;

extern void sysDomainInit(void) ;

Initialization is platform specific and divided into parts that initialize the
critical section mechanisms, the timer used for delayed events and then a catch
all for other platform specific interfaces. The sequence of initialization insures
that by the time application specific initialization is called, the mechanisms are
ready and capable of generating events.

97b 〈external test functions 6〉+≡ (146 149 152) ⊳ 6 99b ⊲

extern void mechInit(void) ;

97c 〈initialization 97c〉≡ (147 150 153)

MECH_TEST_STATIC

MECH_TEST_INLINE

void

mechInit(void)

{

sysPlatformInit() ;

mechEventInit() ;

initCriticalSection() ;

sysTimerInit() ;

sysDeviceInit() ;

sysDomainInit() ;

}

8 TESTING 98

8 Testing

The internals of the mechanisms are meant to be closed to application code.
However, we must be able to support testing of the code and that requires some
access to the internals. Here we discuss that aspects of the code base that are
used for testing.

98a 〈conditional compilation 78〉+≡ (146 149 152) ⊳ 87a

* If the symbol MECH_TEST is defined to the preprocessor,

* then code supporting testing the mechanisms will be

* included in the object file.

We mainly provide the ability to access portions of the main loop processing
for testing. The test program can then generate events, dispatch them and
examine the consequences. To cope with delayed events and other external
synchronizations we also need access to the sync queue and we need to be able
to synchronize things. These considerations also mean that some functions will
have to be made external in scope.

98b 〈conditional defines 98b〉≡ (147 150 153)

#ifdef MECH_TEST

define MECH_TEST_INLINE

define MECH_TEST_STATIC

#else

define MECH_TEST_INLINE inline

define MECH_TEST_STATIC static

#endif /* MECH_TEST */

Uses inline 17 18a 26a 26b 27a 27b 27c 28a 31a 32a 35b 38a 38b 38c 39 45 46a 55 82 83 84
95a 95b 96 100b 101a 101b 102 102 119 120a 120a 122a 122a 133 133 133 135a 135a 136.

First we start with executing sync functions.

98c 〈main loop components declaration 98c〉≡ (146 149 152)

extern bool mechInvokeOneSyncFunc(void) ;

8 TESTING 99

This function removes one function from the sync queue and executes it.
The return value indicates whether or not a sync function was executed (i.e. if
the sync queue was not empty).

99a 〈main loop sync components 99a〉≡ (147 153)

MECH_TEST_STATIC

MECH_TEST_INLINE

bool

mechInvokeOneSyncFunc(void)

{

bool didOne ;

FgSyncBlock blk = syncQueueGet() ;

if (blk && blk->function) {

blk->function(&blk->params) ;

didOne = true ;

} else {

didOne = false ;

}

return didOne ;

}

Uses FgSyncBlock 94c.

Note that this function is made static in scope and inlined when we are not
compiling for testing.

It is also convenient for testing purposes to be able to dispatch a single
event and then regain control of the execution flow. So we define a function to
accomplish that.

99b 〈external test functions 6〉+≡ (146 149 152) ⊳ 97b 115b ⊲

extern bool mechDispatchOneEvent(void) ;

This function may be used to dispatch a single event and returns a boolean
value indicated whether or not an event was actually dispatched.

99c 〈main loop components 99c〉≡ (147 153)

MECH_TEST_STATIC

MECH_TEST_INLINE

bool

mechDispatchOneEvent(void)

{

bool didOne = !eventQueueEmpty(&eventQueue) ;

if (didOne) {

MechEcb ecb = eventQueue.next ;

eventQueueRemove(ecb) ;

mechDispatch(ecb) ;

}

return didOne ;

}

Uses eventQueue 29b and MechEcb 24.

9 POSIX SPECIFIC INTERFACES 100

9 POSIX Specific Interfaces

At this point we have reached the end of the generic code and must now begin
to account for the platform differences in the way timing and asynchronous
execution is handled. This software architecture can be run on a conventional
UNIX platform. This includes Linux, Mac OS X and even Cygwin. The primary
purpose of making the mechanisms run in a POSIX environment is simulation.
Often, a domain can be executed for testing and simulation purposes on a
conventional computer more easily than in the target environment. With I/O
and disk storage, testing and tracing logic is often much easier.

9.1 POSIX Critical Sections

We start with a discussion of how to implement a critical section in POSIX.
In POSIX, the signal is the mechanism of asynchronous execution. There are
times when we must insure that execution is not interrupted by asynchronous
signal execution. The functions in this section accomplish that.

The technique here is to maintain a signal mask of all the signals that are
under control of the mechanisms. This signal mask can then be used to control
signal execution as necessary. Note that an application can call low level signal
handling primitives and manage subsets of signals outside of the mechanisms.
This is definitely discouraged.

100a 〈posix critical section 100a〉≡ (147) 100b ⊲

static sigset_t mechSigMask ;

Defines:
sigset t, used in chunks 103 and 116.

It is necessary to initialize our managed signal mask to be empty.

100b 〈posix critical section 100a〉+≡ (147) ⊳ 100a 101a ⊲

static inline

void

initCriticalSection(void)

{

sigemptyset(&mechSigMask) ;

}

Defines:
inline, used in chunk 98b.

9 POSIX SPECIFIC INTERFACES 101

Starting a critical section just means that we must block all the managed
signals.

101a 〈posix critical section 100a〉+≡ (147) ⊳ 100b 101b ⊲

static inline

void

beginCriticalSection(void)

{

if (sigprocmask(SIG_BLOCK, &mechSigMask, NULL) != 0) {

mechFatalError(mechSignalOpFailed, strerror(errno)) ;

}

}

Defines:
inline, used in chunk 98b.

The end of a critical section is equally easily accomplished by unblocking
the managed signals.

101b 〈posix critical section 100a〉+≡ (147) ⊳ 101a

static inline

void

endCriticalSection(void)

{

if (sigprocmask(SIG_UNBLOCK, &mechSigMask, NULL) != 0) {

mechFatalError(mechSignalOpFailed, strerror(errno)) ;

}

}

Defines:
inline, used in chunk 98b.

9 POSIX SPECIFIC INTERFACES 102

9.2 POSIX Timing Interfaces

In this section we present the timing interface for POSIX systems. In this timing
scheme, the interval timer that measures real time is used and notifications of
elapsed time arrive via SIGALRM.

In an embedded system, time is usually measured in units of clock ticks,
where the amount of real time represented by a clock tick will vary from sys-
tem to system. It is useful then to run the delayed event queue in hardware
device units rather than a conventional time measure so that we may avoid the
conversion computation each time the delayed event queue timing is started or
stopped.

So, we introduce a couple of functions to convert between clock ticks and
milliseconds and vice versa. Since the POSIX interface operates at a higher
level, in the POSIX case there is no transformation. Note that the is a bit of
data type slight of hand going on here. We use the MechDelayTime type to hold
values of milliseconds and clock ticks. In practice this is not a problem, but the
type will have to be chosen to account for the largest values held either of the
uses of the data type.

102 〈posix delayed event helper 102〉≡ (147)

static inline

MechDelayTime

mechMsecToTicks(

MechDelayTime msec)

{

return msec ;

}

static inline

MechDelayTime

mechTicksToMsec(

MechDelayTime ticks)

{

return ticks ;

}

Defines:
inline, used in chunk 98b.

Uses MechDelayTime 41.

9 POSIX SPECIFIC INTERFACES 103

103 〈posix timer services 103〉≡ (147) 104 ⊲

static void

sysTimerMask(void)

{

/*

* Make sure SIGALRM does not go off.

*/

sigset_t mask ;

sigemptyset(&mask) ;

sigaddset(&mask, SIGALRM) ;

if (sigprocmask(SIG_BLOCK, &mask, NULL) != 0) {

mechFatalError(mechSignalOpFailed, strerror(errno)) ;

}

}

static void

sysTimerUnmask(void)

{

/*

* Allow SIGALRM to notify us.

*/

sigset_t mask ;

sigemptyset(&mask) ;

sigaddset(&mask, SIGALRM) ;

if (sigprocmask(SIG_UNBLOCK, &mask, NULL) != 0) {

mechFatalError(mechSignalOpFailed, strerror(errno)) ;

}

}

Uses sigset t 100a.

9 POSIX SPECIFIC INTERFACES 104

To start a timer we supply the number of ticks we want to expire before we
are notified.

104 〈posix timer services 103〉+≡ (147) ⊳ 103 105 ⊲

static void

sysTimerStart(

MechDelayTime time)

{

struct itimerval delayedEventTimer ;

delayedEventTimer.it_interval.tv_sec = 0 ;

delayedEventTimer.it_interval.tv_usec = 0 ;

delayedEventTimer.it_value.tv_sec = time / 1000 ;

delayedEventTimer.it_value.tv_usec = (time % 1000) * 1000 ;

if (setitimer(ITIMER_REAL, &delayedEventTimer, NULL) != 0) {

mechFatalError(mechTimerOpFailed, strerror(errno)) ;

}

sysTimerUnmask() ;

}

Uses MechDelayTime 41.

9 POSIX SPECIFIC INTERFACES 105

The code initializes the real interval timer to use in servicing the delayed
event queue. We set the it interval member, which represents the next value
to be loaded into the timer, to 0. Then when the time given by the it value

member expires the timer is stopped. The system timer is specified in mi-
croseconds and our time value is in milliseconds, so some conversion must be
performed. Upon expiration, SIGALRM is generated. Notice that we exit the
function with SIGALRM unblocked.

Stopping the timer returns the amount of time that had not elapsed.

105 〈posix timer services 103〉+≡ (147) ⊳ 104 106a ⊲

static MechDelayTime

sysTimerStop(void)

{

sysTimerMask() ;

/*

* Fetch the remaining time.

*/

struct itimerval delayedEventTimer ;

if (getitimer(ITIMER_REAL, &delayedEventTimer) != 0) {

mechFatalError(mechTimerOpFailed, strerror(errno)) ;

}

/*

* Convert the returned time into milliseconds.

*/

MechDelayTime remain =

delayedEventTimer.it_value.tv_sec * 1000 +

delayedEventTimer.it_value.tv_usec / 1000 ;

/*

* Set the current timer value to zero to turn it off.

*/

memset(&delayedEventTimer, 0, sizeof(delayedEventTimer)) ;

if (setitimer(ITIMER_REAL, &delayedEventTimer, NULL) != 0) {

mechFatalError(mechTimerOpFailed, strerror(errno)) ;

}

return remain ;

}

Uses MechDelayTime 41.

9 POSIX SPECIFIC INTERFACES 106

Stopping the timer must make sure that SIGALRM does not expire during
the process of getting things stopped.

Since the timing services use SIGALRM, the signal registration function is
used to insure that SIGALRM is serviced.

106a 〈posix timer services 103〉+≡ (147) ⊳ 105 106b ⊲

static void

sysTimerExpire(

int signum)

{

MechDelayTime nextTime = mechTimerExpireService() ;

if (nextTime != 0) {

sysTimerStart(nextTime) ;

}

}

Uses MechDelayTime 41.

106b 〈posix timer services 103〉+≡ (147) ⊳ 106a

static void

sysTimerInit(void)

{

mechRegisterSignal(SIGALRM, sysTimerExpire) ;

}

9.3 POSIX Async Execution Interface

The POSIX view of a process includes the notion of signals. Signals are a form
of asynchronous execution, and reasonably correspond to the interrupts of a
bare metal system. As we have seen in the timer services above, we can use
signals to access a variety of services on a POSIX system.

In this section we fill out the asynchronous execution interfaces using signals.
As we will see, POSIX systems also require that you deal with their I/O interface
in order to properly handle execution sequencing. For now, we present an
interface that allows an application to deal with the asynchronous aspects of
signals. As expected, the interface allows an application to register a sync
function that will be executed at the first safe opportunity after the signal has
expired.

106c 〈posix async interface 106c〉≡ (147) 107a ⊲

SyncParamRef

mechSyncRequest(

SyncFunc f)

{

return syncQueuePut(f, true) ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

9 POSIX SPECIFIC INTERFACES 107

The alternate interface is also easily implemented.

107a 〈posix async interface 106c〉+≡ (147) ⊳ 106c 108 ⊲

SyncParamRef

mechTrySyncRequest(

SyncFunc f)

{

return syncQueuePut(f, false) ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

Applications can register a signal function that will be called ultimately be
called after the signal triggers.

107b 〈posix external functions 107b〉≡ (146) 109b ⊲

typedef void (*SignalFunc)(int) ;

extern void

mechRegisterSignal(

int sigNum,

SignalFunc func) ;

Defines:
SignalFunc, used in chunk 108.

9 POSIX SPECIFIC INTERFACES 108

The arguments are simply, sigNum, the number of the signal being registered
and func, a pointer to a sync function that will be called. If func is NULL, then
the signal’s behavior is reset to its default behavior.

108 〈posix async interface 106c〉+≡ (147) ⊳ 107a

void

mechRegisterSignal(

int sigNum,

SignalFunc func)

{

assert(sigNum > 0) ;

struct sigaction action ;

if (func) {

action.sa_handler = func ;

sigaddset(&mechSigMask, sigNum) ;

} else {

action.sa_handler = SIG_DFL ;

sigdelset(&mechSigMask, sigNum) ;

}

sigfillset(&action.sa_mask) ;

action.sa_flags = 0 ;

int sigresult = sigaction(sigNum, &action, NULL) ;

if (sigresult != 0) {

mechFatalError(mechSignalOpFailed, strerror(errno)) ;

}

}

Uses SignalFunc 107b.

9 POSIX SPECIFIC INTERFACES 109

We set up signal handlers to run uninterrupted by other signals. This is
accomplished by filling the sa mask member of the sigaction structure. This
is simplifies keeping track of what is going on.

9.4 POSIX I/O Interface

On POSIX platforms, the mechanisms must also supply services to handle I/O.
The reason for this is that there are two means of awakening a sleeping process,
receiving a signal and servicing a I/O file descriptor.3 On bare metal systems,
I/O is frequently accomplished on an ad hoc basis and the single mechanism
of the sync queue is usually sufficient. However, POSIX makes a distinction
between signals and I/O operations on file descriptors and an interface needs to
be provided to deal with servicing file descriptors that require attention.

We model this interface after the one for signals. The idea is that a set of
callback functions can be registered on a file descriptor for reading, writing or
an exception. When the condition is satisfied the callback is invoked. So we
must define an I/O callback function as:

109a 〈posix data types 109a〉≡ (146)

typedef void (*FDServiceFunc)(int) ;

Defines:
FDServiceFunc, used in chunks 109b, 111a, and 113.

When the callback is invoked, it is passed the value of the file descriptor that
requires service.

The mechanisms provide two functions for I/O. One registers the callbacks
for a file descriptor and the other removes a file descriptor from consideration.

109b 〈posix external functions 107b〉+≡ (146) ⊳ 107b 110 ⊲

extern void

mechRegisterFDService(

int fd,

FDServiceFunc readService,

FDServiceFunc writeService,

FDServiceFunc exceptService) ;

Uses FDServiceFunc 109a.

3There are other ways to integrate signals and I/O in POSIX systems. The use of a pselect

based approach is a design decision.

9 POSIX SPECIFIC INTERFACES 110

The function, mechRegisterFDService, registers callbacks for a file descrip-
tor.

fd A file descriptor as returned from open, socket or any other system calls
that create file descriptors.

readService A pointer to a callback function that will be registered for the file
descriptor and invoked when the file descriptor is readable or NULL if no
callback is registered.

writeService A pointer to a callback function that will be registered for the
file descriptor and invoked when the file descriptor is writable or NULL if
no callback is registered.

exceptService A pointer to a callback function that will be registered for the
file descriptor and invoked when the file descriptor is in an exception con-
dition or NULL if no callback is registered. In practice, exception conditions
are used only for reading OOB (out of bands) data on a TCP socket.

The corresponding remove function has the following interface.

110 〈posix external functions 107b〉+≡ (146) ⊳ 109b

extern void

mechRemoveFDService(

int fd,

bool rmRead,

bool rmWrite,

bool rmExcept) ;

9 POSIX SPECIFIC INTERFACES 111

fd A file descriptor as returned from open, socket or any other system calls
that create file descriptors.

rmRead A boolean indicated whether or not the file descriptor should have its
read callback unregistered.

rmWrite A boolean indicated whether or not the file descriptor should have its
write callback unregistered.

rmExcept A boolean indicated whether or not the file descriptor should have
its exception callback unregistered.

The implementation of these two functions requires some internal data struc-
tures to track the file descriptor sets. File descriptor sets are handed to pselect
to indicate how a process is to be awakened for I/O servicing.

To track the callback functions we need a data structure.

111a 〈posix io data 111a〉≡ (147) 111b ⊲

typedef struct fdservicemap {

bool set ;

FDServiceFunc read ;

FDServiceFunc write ;

FDServiceFunc except ;

} *FDServiceMap ;

Defines:
FDServiceMap, used in chunks 113, 114, and 116.

Uses FDServiceFunc 109a.

set A boolean indicating whether or not the entry is in use.

read A pointer to the read callback registered for the file descriptor or NULL if
no callback is registered.

write A pointer to the write callback registered for the file descriptor or NULL
if no callback is registered.

except A pointer to the exception callback registered for the file descriptor or
NULL if no callback is registered.

Following our familiar pattern, we define an array of mapping entries that
defines a pool for storing the entries that map file descriptor state to callbacks.
This array is indexed by file descriptor value.

111b 〈posix io data 111a〉+≡ (147) ⊳ 111a 112a ⊲

static struct fdservicemap mechFDServicePool[FD_SETSIZE] ;

Defines:
mechFDServicePool, used in chunks 113, 114, and 116.

9 POSIX SPECIFIC INTERFACES 112

The value of FD SETSIZE is determined by the system and is the maximum
number of file descriptors that can be in a fd set given to select.

One complication of using pselect as a means of registering intent on mul-
tiple file descriptors is that you must keep track of the largest value of a file
descriptor in the set handed to pselect. This is an argument to pselect (and
select). Fortunately, UNIX file descriptors operate in a rather predictable
manner. Each process has file descriptors 0, 1, and 2 open when the process
is started. Creating a new file descriptor (e.g. by opening a file) will allocate
the next largest unused file descriptor number. This rule applies to the three
file descriptors opened by default for a process. So, for example, closing file
descriptor 2 and then opening a new file will result in file descriptor 2 being
reused. All this makes tracking the maximum file descriptor number relatively
easy. We only need a single integer variable.

112a 〈posix io data 111a〉+≡ (147) ⊳ 111b 112b ⊲

static int mechMaxFD = -1 ;

Defines:
mechMaxFD, used in chunks 113, 114, and 116.

Since mechMaxFD holds the maximum value of the file descriptors that have
been registered, the value -1 indicates that there are no registered file descrip-
tors.

We need variables to hold the three sets of file descriptors needed by pselect.

112b 〈posix io data 111a〉+≡ (147) ⊳ 112a

static fd_set mechReadFDS ;

static fd_set mechWriteFDS ;

static fd_set mechExceptFDS ;

Defines:
fd set, used in chunk 116.

9 POSIX SPECIFIC INTERFACES 113

Finally, we can talk about the implementation of the I/O registration func-
tions.

113 〈posix io interface 113〉≡ (147) 114 ⊲

void

mechRegisterFDService(

int fd,

FDServiceFunc readService,

FDServiceFunc writeService,

FDServiceFunc exceptService)

{

assert(fd >= 0 && fd < FD_SETSIZE) ;

FDServiceMap fds = mechFDServicePool + fd ;

fds->read = readService ;

if (readService) {

FD_SET(fd, &mechReadFDS) ;

fds->set = true ;

} else {

FD_CLR(fd, &mechReadFDS) ;

}

fds->write = writeService ;

if (writeService) {

FD_SET(fd, &mechWriteFDS) ;

fds->set = true ;

} else {

FD_CLR(fd, &mechWriteFDS) ;

}

fds->except = exceptService ;

if (exceptService) {

FD_SET(fd, &mechExceptFDS) ;

fds->set = true ;

} else {

FD_CLR(fd, &mechExceptFDS) ;

}

if (fds->read == NULL && fds->write == NULL && fds-> except == NULL) {

if (fds->set && fd >= mechMaxFD) {

--mechMaxFD ;

}

fds->set = false ;

} else if (fds->set && fd > mechMaxFD) {

mechMaxFD = fd ;

}

9 POSIX SPECIFIC INTERFACES 114

}

Uses FDServiceFunc 109a, FDServiceMap 111a, mechFDServicePool 111b, and mechMaxFD 112a.

The function simply tests the various callback functions and if they are
not NULL, then the file descriptor is added to the appropriate set. As written,
mechRegisterFDService may be used to modify file descriptors already regis-
tered. The last bit of logic is there in case mechRegisterFDService is used to
effectively remove the file descriptor by supplying three NULL callback function
pointers. We must also account for the maximum file descriptor value that has
been registered.

Removing a file descriptor from consideration is also straight forward.

114 〈posix io interface 113〉+≡ (147) ⊳ 113 115a ⊲

void

mechRemoveFDService(

int fd,

bool rmRead,

bool rmWrite,

bool rmExcept)

{

assert(fd >= 0 && fd < FD_SETSIZE) ;

FDServiceMap fds = mechFDServicePool + fd ;

if (rmRead) {

fds->read = NULL ;

FD_CLR(fd, &mechReadFDS) ;

}

if (rmWrite) {

fds->write = NULL ;

FD_CLR(fd, &mechWriteFDS) ;

}

if (rmExcept) {

fds->except = NULL ;

FD_CLR(fd, &mechExceptFDS) ;

}

if (fds->read == NULL && fds->write == NULL && fds-> except == NULL &&

fd >= mechMaxFD) {

mechMaxFD = fd - 1 ;

}

}

Uses FDServiceMap 111a, mechFDServicePool 111b, and mechMaxFD 112a.

9 POSIX SPECIFIC INTERFACES 115

We also need something to initialize the file descriptor sets that we are
maintaining.

115a 〈posix io interface 113〉+≡ (147) ⊳ 114

static void

fdServiceInit(void)

{

FD_ZERO(&mechReadFDS) ;

FD_ZERO(&mechWriteFDS) ;

FD_ZERO(&mechExceptFDS) ;

}

9.5 POSIX Suspending Execution

The main loop detects when there is nothing left to do and suspends execution.
Here we present how that suspension happens for the POSIX version of the
mechanisms.

This design is based on using pselect to suspend a process until either
a signal occurs or a file descriptor requires service. The mechWait function is
called by the main loop when there is no work currently to be done. It is invoked
inside of a critical section. This is an important entry condition for mechWait.
In the POSIX case, this means that mechWait must be invoked with all the
registered signals blocked. We then use pselect to atomically enable all signals
and block the process.

115b 〈external test functions 6〉+≡ (146 149 152) ⊳ 99b

extern void mechWait(void) ;

9 POSIX SPECIFIC INTERFACES 116

116 〈posix suspend execution 116〉≡ (147)

MECH_TEST_STATIC

void

mechWait(void)

{

beginCriticalSection() ;

if (syncQueueEmpty()) {

/*

* Copy the file descriptor sets since "pselect"

* modifies them in place upon return.

*/

fd_set readfds ;

memcpy(&readfds, &mechReadFDS, sizeof(readfds)) ;

fd_set writefds ;

memcpy(&writefds, &mechWriteFDS, sizeof(writefds)) ;

fd_set exceptfds ;

memcpy(&exceptfds, &mechExceptFDS, sizeof(exceptfds)) ;

/*

* Allow all the signals during the select. We

* assume that when we enter this function, the

* registered signals are masked.

*/

sigset_t mask ;

sigemptyset(&mask) ;

/*

* "mechMaxFD" holds the maximum value of any

* registered file descriptor. We must add one to

* get the number of file descriptors "pselect" is

* to consider.

*/

int r = pselect(mechMaxFD + 1, &readfds, &writefds,

&exceptfds, NULL, &mask) ;

if (r == -1) {

if (errno != EINTR) {

mechFatalError(mechSelectWaitFailed,

strerror(errno)) ;

}

/*

* Got a signal while waiting. We go back to the

* main loop on the assumption that something

* has been placed in the sync queue.

*/

} else {

/*

* Dispatch the service functions for the file

* descriptors.

9 POSIX SPECIFIC INTERFACES 117

*/

FDServiceMap s = mechFDServicePool ;

for (int fd = 0 ; r > 0 && fd <= mechMaxFD ;

++fd, ++s) {

/*

* Do exceptions first. This is only

* important for sockets, but without going

* first the OOB data processing won’t

* work.

*/

if (FD_ISSET(fd, &exceptfds)) {

assert(s->except != NULL) ;

s->except(fd) ;

--r ;

}

if (FD_ISSET(fd, &readfds)) {

assert(s->read != NULL) ;

s->read(fd) ;

--r ;

}

if (FD_ISSET(fd, &writefds)) {

assert(s->write != NULL) ;

s->write(fd) ;

--r ;

}

}

}

}

endCriticalSection() ;

}

Uses fd set 112b 112b 112b, FDServiceMap 111a, mechFDServicePool 111b, mechMaxFD 112a,
and sigset t 100a.

9 POSIX SPECIFIC INTERFACES 118

By far, most of the work in mechWait is to deal with the file descriptor status
changes. The file descriptor sets must be copied before being handed to pselect
since it modifies them in place. After we determine that it was a file descriptor
status change that caused us to wake up, we must go through and find all file
descriptors that had a status change and invoke the callback function.

The way that we are using pselect in this circumstance may seem a bit
backwards. Upon entry to mechWait, we start a critical section where the
registered signals are blocked. The signal mask given to pselect is empty,
meaning that pselect will allow all signals while the process sleeps. Upon the
return from pselect we will be back to the state where the registered signals
are blocked. Thus we avoid the race condition where we have determined that
the sync queue is empty, but asynchronous execution that might affect the sync
queue arrives before we can put the process to sleep. This is exactly the type
of race condition pselect is used to prevent.

It is also worth noting we do not use any time out in the pselect invocation.
All timing is done via delayed events, and they are signalled via SIGALRM and
managed on the delayed event queue as discussed before (p. 40).

9.6 POSIX Initialization

Here we present the POSIX version of the required internal initialization.

118 〈posix initialization 118〉≡ (147)

static void

sysPlatformInit(void)

{

fdServiceInit() ;

}

10 ARM CORTEX-M3 SPECIFIC INTERFACES 119

9.7 POSIX Compilation

The POSIX version of this code is tested under Linux. There are some sig-
nificant dependencies in the code on specific system functionality, especially for
synchronization and suspending execution. Recent versions of glibc use a set of
feature test macros to control how definitions are exposed in the system header
files. Further, some of the mechanisms code depend upon C99 capablity. So,
to insure proper compilation under gcc the following compiler options should
be used:

• --std=c99

• -D POSIX C SOURCE=200112L

You may need to adjust these options for your particular version of gcc.

10 ARM Cortex-M3 Specific Interfaces

The ARM R© Cortex-M3 R© core is a relatively recent entry into the low end
micro-controller world. It is significant that as an ARM core it brings a much
more modern architecture than typically found in this realm. Most important
for our concerns here are a set of standard peripherals for handling interrupts,
debugging and other system related issues. This significantly eases the problem
of porting low level system code to the different chips that have Cortex-M3
cores. The reader is referred to the excellent book [6] for complete description
of the Cortex-M3 core.

However, a core is just a core and all real chips that incorporate a Cortex-M3
core have many other peripherals. Inevitably, this causes chip specific differences
that have to be accounted for. This variability is somewhat compensated for
by ARM having come out with the Cortex Micro-controller Software Interface
Standard (CMSIS) effort to standardize the naming and “C” language header
files for accessing the both the ARM defined core and vendor specific peripherals.
Vendors now supply header files that deal with the peripherals that they include
on the chips as well as the standard parts of the Cortex-M3 core. We use the
CMSIS interfaces in this program.

10.1 Cortex-M3 Critical Sections

The three functions needed to implement critical sections are straight forward
in the Cortex-M3 implementation. We use the initialization function to set
the priority of the PendSV exception to be the lowest priority (highest priority
number) of any exception. It is critical in designing your priority scheme insure
that PendSV is the lowest priority exception.

119 〈cortex-m3 critical section 119〉≡ (150) 120a ⊲

static inline

void

initCriticalSection(void)

10 ARM CORTEX-M3 SPECIFIC INTERFACES 120

{

#define MECH_PENDSV_PRIORITY 0xff

NVIC_SetPriority(PendSV_IRQn, MECH_PENDSV_PRIORITY) ;

}

Defines:
inline, used in chunk 98b.

As is usual in bare metal environments, critical sections are implemented
by disabling interrupts. Note that in the Cortex-M3, disabling interrupts still
allows the bus fault and other high priority exception to occur.

120a 〈cortex-m3 critical section 119〉+≡ (150) ⊳ 119

static inline

void

beginCriticalSection(void)

{

__disable_irq() ;

}

static inline

void

endCriticalSection(void)

{

__enable_irq() ;

}

Defines:
inline, used in chunk 98b.

10.2 Cortex-M3 Timing Interfaces

The timing interfaces for the Cortex-M3 are more complicated than for POSIX
simply because there is less standard interface to depend upon. It is tempting
to try to use the SysTick counter for delayed event timing. However, this may
not be possible depending upon the details of the way SysTick is clocked.

1. Often SysTick is clocked by the same clock as the processor core. This is
often very fast, in the megahertz range.

2. The SysTick counter is only 24 bits. That combined with a fast clock
yields a very limited range of timing.

It is clear that SysTick was designed for periodic timing interrupts of the type
we are explicitly trying to avoid. However, we give a SysTick implementation
here as a default which should also serve as an example for how to use other
timing resources for delayed events.

120b 〈cm3 conditional compilation 120b〉≡ (149) 121a ⊲

* When compiling for the Cortex-M3, defining the symbol

* CM3_USE_SYSTICK indicates that the SysTick clock

* will be used for delayed event timing.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 121

In low power systems, 32 KiHz clocks are common since low power oscillators
of this frequency are readily available. One convenient clocking scheme is to
divide 32 KiHz down by 8 to yield a 4 KiHz frequency which is approximately
244 microseconds per tick. This clocking combined with a 24 bit timer register
gives reasonable ranges at resolutions good enough for most application level
timing. Remember, delayed events are not designed for high rate precise timing.
If that is required, you will need to dedicate a timing resource to such needs.

121a 〈cm3 conditional compilation 120b〉+≡ (149) ⊳ 120b

* When compiling for the Cortex-M3, the value of the symbol

* MECH_TIMER_FREQUENCY gives the number of clock ticks

* in one second. The default value is 4096.

It is necessary to set up some constants to define the conversion from clock
ticks to milliseconds, the units of delayed event timing.

121b 〈cortex-m3 delayed event helper 121b〉≡ (150) 122a ⊲

#ifdef CM3_USE_SYSTICK

extern uint32_t SystemCoreClock ;

define MECH_TIMER_FREQUENCY SystemCoreClock

#else

ifndef MECH_TIMER_FREQUENCY

define MECH_TIMER_FREQUENCY 4096UL

endif /* MECH_TIMER_FREQUENCY */

#endif /* CM3_USE_SYSTICK */

#ifndef MECH_MAX_CLOCK_TICKS

ifdef CM3_USE_SYSTICK

define MECH_MAX_CLOCK_TICKS 0x00ffffffUL

else

define MECH_MAX_CLOCK_TICKS UINT32_MAX

endif /* CM3_USE_SYSTICK */

#endif /* MECH_MAX_CLOCK_TICKS */

#define MECH_MAX_MSEC_DELAY\

((MECH_MAX_CLOCK_TICKS / MECH_TIMER_FREQUENCY) * 1000UL)

Defines:
MECH MAX MSEC DELAY, used in chunks 122a and 135a.

Uses MECH MAX CLOCK TICKS 134b.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 122

Unlike the POSIX delayed event timing, the conversation from ticks the
milliseconds and vice versa is not the identity mapping.

122a 〈cortex-m3 delayed event helper 121b〉+≡ (150) ⊳ 121b

static inline

MechDelayTime

mechMsecToTicks(

MechDelayTime msec)

{

if (msec > MECH_MAX_MSEC_DELAY) {

msec = MECH_MAX_MSEC_DELAY ;

}

/*

* We must avoid overflow if the requested number of

* msecs is large.

*/

return msec < MECH_MAX_CLOCK_TICKS / MECH_TIMER_FREQUENCY ?

((msec * MECH_TIMER_FREQUENCY) + 1000UL / 2UL) / 1000UL :

((msec + 1000UL / 2UL) / 1000UL) * MECH_TIMER_FREQUENCY ;

}

static inline

MechDelayTime

mechTicksToMsec(

MechDelayTime ticks)

{

return ticks < MECH_MAX_CLOCK_TICKS / 1000UL ?

((ticks * 1000UL) + MECH_TIMER_FREQUENCY / 2UL) / MECH_TIMER_FREQUENCY :

((ticks + MECH_TIMER_FREQUENCY / 2UL) / MECH_TIMER_FREQUENCY) * 1000UL ;

}

Defines:
inline, used in chunk 98b.

Uses MECH MAX CLOCK TICKS 134b, MECH MAX MSEC DELAY 121b 134b, and MechDelayTime 41.

For the Cortex-M3, the following functions must be provided to operated
the delayed event timing. We provide default ones based on SysTick, but,
as discussed above, you may need to provide a different timing resource from
SysTick and, consequently, provide an implementation for that timing resource.

122b 〈cortex-m3 timing declarations 122b〉≡ (149)

extern void sysTimerInit(void) ;

extern void sysTimerMask(void) ;

extern void sysTimerUnmask(void) ;

extern void sysTimerStart(MechDelayTime) ;

extern MechDelayTime sysTimerStop(void) ;

Uses MechDelayTime 41.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 123

The SysTick implementation is defined to be weak so that you can override
them with your own functions.

123 〈cortex-m3 timer services 123〉≡ (150)

void

__WEAK

sysTimerInit(void)

{

SysTick->CTRL = 0 ;

}

void

__WEAK

sysTimerMask(void)

{

SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk ;

}

void

__WEAK

sysTimerUnmask(void)

{

SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk ;

}

void

__WEAK

sysTimerStart(

MechDelayTime time)

{

SysTick->LOAD = time ;

SysTick->VAL = 0 ;

SysTick->CTRL =

SysTick_CTRL_CLKSOURCE_Msk |

SysTick_CTRL_ENABLE_Msk |

SysTick_CTRL_TICKINT_Msk ;

}

MechDelayTime

__WEAK

sysTimerStop(void)

{

SysTick->CTRL = 0 ;

return SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk ?

0 : SysTick->LOAD - SysTick->VAL ;

}

10 ARM CORTEX-M3 SPECIFIC INTERFACES 124

void

SysTick_Handler(void)

{

beginCriticalSection() ;

SysTick->CTRL = 0 ;

MechDelayTime nextTime = mechTimerExpireService() ;

if (nextTime != 0) {

sysTimerStart(nextTime) ;

}

endCriticalSection() ;

}

Uses WEAK 147 149 152 and MechDelayTime 41.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 125

10.3 Cortex-M3 Async Execution Interface

The ARM Cortex-M3 has a very flexible and rather sophisticated exception
processing architecture. In this context exception processing involves exceptions
detected by the processor as well as external interrupts. The Cortex-M3 provides
individually assignable priorities, priority groups and a well defined set of system
exceptions. The full capabilities are beyond the scope of this paper and here we
will only discuss those features of the Cortex-M3 exception processing scheme
that we use.

If you examine the asynchronous execution rules of the STSA carefully, you
can boil things down to a very few requirements.

1. Interrupts make their presence known to the background thread by posting
a synchronization request using mechSyncRequest()or mechTrySyncRequest.

2. Synchronization requests are executed in preference to dispatching events.
While a synchronization request is executing, interrupts must be allowed.

3. While a state action is executing, synchronization requests must not be
executed and interrupts must be allowed.

Clearly, there is a three priority scheme inherent in these rules. Note that
only interrupts are allowed to be preemptive. Executing synchronization re-
quests and state actions do not preempt each other. Each must wait for the
other to complete. In those processors (or as we say above in the case of a
POSIX process) that only support two priorities in hardware, we execute the
synchronization requests in the main loop. However, if there is additional ca-
pability in the hardware, we can take advantage of it. The idea is to execute
synchronization requests in a higher priority processing state.

The processing prioritization capability of the Cortex-M3 architecture can
be used to accomplish a multi-priority processing scheme. The feature of the
Cortex-M3 architecture that maps very well to these rules is the Pend Service
or PendSV exception. PendSV is intended to provide a means for interrupts
to request additional service. The priority of the PendSV execution may be
set independently of the priority of ordinary background processing. When the
processing level is appropriate, the PendSV exception will execute. The key
to making this scheme work is to assign the lowest possible priority (highest
possible priority number) to the PendSV exception and to insure that the pri-
ority of all other exceptions is greater (smaller priority number) than that of
PendSV. This means that PendSV exception handler will execute only if there
are no there are no other exceptions pending and that higher priority exceptions
(larger priority number) may preempt the PendSV exception. In particular this
insures that interrupts are allowed during the sync request processing. To pre-
vent sync requests from executing during the state action the base priority of
execution is set equal to the priority of the PendSV exception thereby insuring
that it does not get executed. Since all other exception priorities are higher,
they will be allowed to execute during a state action.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 126

First, we examine the code to perform a sync request.

126a 〈cortex-m3 async interface 126a〉≡ (150) 126b ⊲

SyncParamRef

mechSyncRequest(

SyncFunc f)

{

beginCriticalSection() ;

SyncParamRef params = syncQueuePut(f, true) ;

endCriticalSection() ;

SCB->ICSR = SCB_ICSR_PENDSVSET_Msk ;

return params ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

Recall that mechSyncRequest is only intended to be called from interrupt ser-
vice level. We insert a critical section around syncQueuePut. This is neces-
sary in case the interrupt prioritization has been set such that preemption of
a higher priority interrupt is allowed. The main difference here is that, in ad-
dition to queuing the sync request, the PendSV exception is made pending.
Since mechSyncRequest is only executed at interrupt service priority, PendSV
is indeed only made pending here. The variation that does not fail on queue
overflow is similar.

126b 〈cortex-m3 async interface 126a〉+≡ (150) ⊳ 126a 127a ⊲

SyncParamRef

mechTrySyncRequest(

SyncFunc f)

{

beginCriticalSection() ;

SyncParamRef params = syncQueuePut(f, false) ;

endCriticalSection() ;

if (params) {

SCB->ICSR = SCB_ICSR_PENDSVSET_Msk ;

}

return params ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 127

Of course it is necessary to have an exception handler. This takes the place
of the code segment that would otherwise appear in the main loop.

127a 〈cortex-m3 async interface 126a〉+≡ (150) ⊳ 126b

void

PendSV_Handler(void)

{

/*

* Empty the foreground / background

* synchronization queue.

*/

for (FgSyncBlock blk = syncQueueGet() ; blk ;

blk = syncQueueGet()) {

if (blk->function) {

blk->function(&blk->params) ;

}

}

}

Uses FgSyncBlock 94c.

So we see that the exception handler just empties the sync queue in a tight
loop. Because it runs at the lowest priority and assuming that the priority
grouping has been set up to allow preemption of higher priority interrupts,
any external interrupts may preempt the exception handler. Again, a critical
section around the queue access in syncQueueGet is necessary because of the
preemption possibilities.

The last step is to insure that state actions are not preempted by the
PendSV handler. We can accomplish that by raising the base priority of ex-
ecution to match that of the PendSV handler. So it is necessary to modify
mechDispatchOneEvent slightly.

127b 〈cortex-m3 main loop components 127b〉≡ (150)

MECH_TEST_STATIC

MECH_TEST_INLINE

bool

mechDispatchOneEvent(void)

{

__set_BASEPRI(MECH_PENDSV_PRIORITY) ;

bool didOne = !eventQueueEmpty(&eventQueue) ;

if (didOne) {

MechEcb ecb = eventQueue.next ;

eventQueueRemove(ecb) ;

mechDispatch(ecb) ;

}

__set_BASEPRI(0) ;

return didOne ;

}

Uses eventQueue 29b and MechEcb 24.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 128

By raising the priority to match that of PendSV, we allow higher priority
interrupts to occur, but when they invoke mechSyncRequest the PendSV execu-
tion is made pending and does not preempt the state action execution because
of the elevated base priority.

10.4 Cortex-M3 Suspending Execution

For the POSIX version of STSA, suspending execution was complicated by
the fact that there are really two things that can require the attention of a
program, signals and I/O on a file descriptor. There are usually no concepts
like file descriptors on bare metal so suspending on a Cortex-M3 is much simpler.
Indeed there is a built in instruction to do the hard work.

The more difficult task in a low power system is making sure that suspending
the processor puts the system in a state of lowered power consumption from
which it will awaken when an interrupt occurs. This can be very system specific,
so we delegate two functions to the ready the system for powering down and
then up again.

128a 〈cortex-m3 power declarations 128a〉≡ (149)

extern void sysPowerDown(void) ;

extern void sysPowerUp(void) ;

The sysPowerDown() function is invoked just before going to sleep and the
sysPowerUp() function is invoked just after waking up. Usually, these func-
tions must handle enabling / disabling clocking of the microprocessor core and
peripherals. Both are invoked in a critical section. We provide empty defaults,
weakly referenced that can be overridden as necessary.

128b 〈cortex-m3 power management 128b〉≡ (150)

void

__WEAK

sysPowerDown(void)

{

}

void

__WEAK

sysPowerUp(void)

{

}

Uses WEAK 147 149 152.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 129

Now we can see what waiting entails on a Cortex-M3.

129 〈cortex-m3 suspend execution 129〉≡ (150)

MECH_TEST_STATIC

MECH_TEST_INLINE

void

mechWait(void)

{

beginCriticalSection() ;

if (syncQueueEmpty() &&

eventQueueEmpty(&eventQueue)) {

sysPowerDown() ;

__WFI() ;

sysPowerUp() ;

}

endCriticalSection() ;

}

Uses eventQueue 29b.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 130

The test for whether or not both the sync and event queues are empty must
be done in a critical section. This insures that no interrupt gets in and posts a
sync request while we are trying to determine if there is any additional work to
be done.

There is actually another way suspend the Cortex-M3, Wait For Event
(WFE). WFE is usually used in multi-processor systems and we don’t consider
it here.

10.5 Cortex-M3 Exception Scenarios

We now have sufficient detail to step through some of the cases of waking up and
going to sleep for a Cortex-M3 and show how that interacts with interrupts and
the PendSV handler to implement foreground / background synchronization.
This should help clarify the design decisions in the Cortex-M3 case. We will
consider three common cases:

1. We are asleep and an interrupt arrives.

2. We are executing a sync function and an interrupt arrives.

3. We are executing a state action and an interrupt arrives.

Interrupt While Sleeping

If we are asleep, then execution has stopped at the WFI instruction in mechWait.
As soon as an interrupt is pending, execution resumes at the instruction after the
WFI. Before going to sleep, we were in a critical section, so the interrupt handler
does not execute. However, as soon as we exit the critical section, the interrupt
will be made active and execution of the interrupt handler will begin. At some
point we will assume the interrupt handler invokes mechSyncRequest(). This
will cause the PendSV exception to become pending. Since PendSV runs at the
lowest priority, it will not preempt the interrupt handler.

As soon as the interrupt handler exits and assuming that there are no other
interrupts pending, the processor will tail chain to the PendSV handler as it
will be the highest priority pending exception. The PendSV handler empties
the sync queue. Since it runs at the lowest priority, it may be preempted by
interrupts that occur. We will assume that a state machine event was posted by
the sync function. Assuming that the sync queue is emptied and no exceptions
are pending, the PendSV handler exits returning the execution to the end of
mechWait where it was originally preempted.

Upon the return from mechWait, the main loop looks to dispatch any queued
events. If it finds an event, the base priority of execution is raised to be the
same as the PendSV priority. This will insure that the event dispatch is not
preempted by the PendSV exception and therefore no sync functions will be
executed while the state action is running. However, since interrupts are higher
in priority, they may preempt the state action execution.

10 ARM CORTEX-M3 SPECIFIC INTERFACES 131

Interrupt During Sync Function Execution

In the above scenario, if an interrupt arrives while executing a sync func-
tion, the PendSV exception is preempted. The interrupt may make calls to
mechSyncRequest(), queuing another sync request. Upon return from the in-
terrupt handler, the PendSV handler will resume and continue executing until
the sync queue is empty. Given that each invocation of mechSyncRequest()
causes PendSV to become a pending exception, the processor will tail chain
back to the PendSV handler. At some point in time the sync queue will be
empty and no interrupts will have queue any other sync requests. Execution
resumes at base priority 0.

Interrupt During State Action Execution

During the execution of a state action the base priority of execution is raised to
be the same as the PendSV exception. This insures that interrupts may preempt
the state action but that any sync requests by the interrupt handler will not
execute. When the state action returns and the event dispatch is complete, the
base priority is set back to zero. If the interrupt invoked mechSyncRequest(),
then PendSV will be pending and as soon as the base priority is lowered back to
zero, background execution is preempted and the PendSV handler is invoked.

10.6 Cortex-M3 Initialization

Initializing a Cortex-M3 platform can be rather complicated. Each chip vendor
typically has a different clocking scheme that must be set up and for the most
part you are own your own here. The supplied function below is far to minimal
to be of any real use in a a real system, but contains a couple of things that
usually need to be set up on a Cortex-M3.

131 〈cortex-m3 external scoped functions 131〉≡ (149)

extern void sysPlatformInit(void) ;

10 ARM CORTEX-M3 SPECIFIC INTERFACES 132

132 〈cortex-m3 initialization 132〉≡ (150)

void

__WEAK

sysPlatformInit(void)

{

/*

* Set stack align, so ISR’s are truly ordinary "C"

* functions.

*/

SCB->CCR |= SCB_CCR_STKALIGN_Msk ;

/*

* Deep sleep when we wait

*/

SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk ;

}

Uses WEAK 147 149 152.

11 TI MSP430 SPECIFIC INTERFACES 133

11 TI MSP430 Specific Interfaces

The TI R© MSP430 R© is a favorite micro-controller for ultra-low power applica-
tions. It has good power consumption numbers and very low sleep current draw.
Although the architecture is rather old, it is clean and orthogonal and has good
code density if somewhat less than spectacular execution cycle efficiency.

The compiler tool chain for the MSP430 is somewhat limited. The TI CCS
offering is not strong and it seems that the IAR R© Embedded Workbench for
the MSP430 is the best choice for compiler. That is our target here.

11.1 MSP430 Critical Sections

The MSP430 has fixed interrupt priorities for its peripherals. Although it is
possible to allow nested interrupts, we avoid such complications here. Critical
sections are implemented using compiler intrinsic functions to globally disable
and enable interrupts.

133 〈msp430 critical section 133〉≡ (153)

static inline

void

initCriticalSection(void)

{

}

static inline

void

beginCriticalSection(void)

{

__disable_interrupt() ;

}

static inline

void

endCriticalSection(void)

{

__enable_interrupt() ;

}

Defines:
inline, used in chunk 98b.

11 TI MSP430 SPECIFIC INTERFACES 134

11.2 MSP430 Timing Interfaces

Unfortunately, the MSP430 has a rather limited set of independent timer pe-
ripherals. The timers are rather sophisticated in what they can do, it is just
that there are typically only two independently clocked timers. Most applica-
tions will end up using all the timers in some way. So, it is very possible that
the timer code given here will have to be modified for your particular system.
Because of this, we will split out a platform specific file for the MSP430, unlike
the other platforms. Since, the compiler doesn’t support weak declarations, it
will be easier to make modifications if the MSP430 platform specific code is in
a separate file.

The supplied code should give you the idea of how to interface the MSP430
to your particular timer usage. Here we will use Timer A and the CCR 0 for
timing delayed events. For delayed event timing, we will clock Timer A off of
the 32 KiHz ACLK and, by default, divide the clock down by a factor of 8.
That will give us 4096 ticks per second or 244 microseconds per tick. This is
sufficient resolution for delayed events.

134a 〈msp430 conditional compilation 134a〉≡ (152)

* When compiling for the MSP430, the value of the symbol

* MECH_TIMER_FREQUENCY gives the number of clock ticks

* in one second. The default value is 4096.

It is necessary to set up some constants to define the conversion from clock
ticks to milliseconds, the units of delayed event timing.

134b 〈msp430 delayed event helper 134b〉≡ (153) 135a ⊲

#ifndef MECH_TIMER_FREQUENCY

define MECH_TIMER_FREQUENCY 4096UL

#endif /* MECH_TIMER_FREQUENCY */

#define MECH_MAX_CLOCK_TICKS UINT32_MAX

#define MECH_MAX_MSEC_DELAY\

((MECH_MAX_CLOCK_TICKS / MECH_TIMER_FREQUENCY) * 1000UL)

Defines:
MECH MAX CLOCK TICKS, used in chunks 121b, 122a, and 135a.
MECH MAX MSEC DELAY, used in chunks 122a and 135a.

11 TI MSP430 SPECIFIC INTERFACES 135

Like before, we need functions to convert from rational time units to clock
ticks and vice versa.

135a 〈msp430 delayed event helper 134b〉+≡ (153) ⊳ 134b

static inline

MechDelayTime

mechMsecToTicks(

MechDelayTime msec)

{

if (msec > MECH_MAX_MSEC_DELAY) {

msec = MECH_MAX_MSEC_DELAY ;

}

/*

* We must avoid overflow if the requested number of

* msecs is large.

*/

return msec < MECH_MAX_CLOCK_TICKS / MECH_TIMER_FREQUENCY ?

((msec * MECH_TIMER_FREQUENCY) + 1000UL / 2UL) / 1000UL :

((msec + 1000UL / 2UL) / 1000UL) * MECH_TIMER_FREQUENCY ;

}

static inline

MechDelayTime

mechTicksToMsec(

MechDelayTime ticks)

{

return ticks < MECH_MAX_CLOCK_TICKS / 1000UL ?

((ticks * 1000UL) + MECH_TIMER_FREQUENCY / 2UL) / MECH_TIMER_FREQUENCY :

((ticks + MECH_TIMER_FREQUENCY / 2UL) / MECH_TIMER_FREQUENCY) * 1000UL ;

}

Defines:
inline, used in chunk 98b.

Uses MECH MAX CLOCK TICKS 134b, MECH MAX MSEC DELAY 121b 134b, and MechDelayTime 41.

So the functions that are supplied in a separate file are given below.

135b 〈msp430 timing declarations 135b〉≡ (152)

extern void sysTimerInit(void) ;

extern void sysTimerMask(void) ;

extern void sysTimerUnmask(void) ;

extern void sysTimerStart(MechDelayTime) ;

extern MechDelayTime sysTimerStop(void) ;

Uses MechDelayTime 41.

11 TI MSP430 SPECIFIC INTERFACES 136

Now we tackle some of the quirkyness of timers on the MSP430. We will need
a function to read the timer. One might think this is simple and uncomplicated,
but alas no. Bottom line is that you need to do a voting type of read to make
sure that the timer didn’t roll from the low byte to the upper byte during
the read. We just insist that one be able to read the timer some number of
successive times and get the same result each time. In our case here we use
three successive reads. In truth two should be sufficient, but since we have
taken all the time to get into a loop, we might as well put on both our belt and
suspenders. Fortunately, we don’t do a lot of timer reading.

136 〈msp430 timer services 136〉≡ (154) 137 ⊲

static inline

uint16_t

readTimer(void)

{

define SUCCESSIVE_MATCHES 3

uint16_t cmp1Reg ;

uint16_t cmp2Reg ;

uint8_t cnt ;

cnt = 1 ;

cmp1Reg = TAR ;

do {

cmp2Reg = TAR ;

cnt = cmp1Reg == cmp2Reg ? cnt + 1 : 1 ;

cmp1Reg = cmp2Reg ;

} while (cnt < SUCCESSIVE_MATCHES) ;

return cmp2Reg ;

undef SUCCESSIVE_MATCHES

}

Defines:
inline, used in chunk 98b.

Uses uint16 t 138 and uint8 t 11a 11b 23b 23c 62a 70b.

11 TI MSP430 SPECIFIC INTERFACES 137

Next we need to be able to set the timer with a value. In this particular usage
of Timer A, we are running it in so called continuous mode. In this mode, the
timer counts from 0 to its maximum value and then rolls over to 0, continuing
to count. This mode of operation makes it a bit easier to use the other two
Timer A Capture/Compare registers for other purposes in the system, but it
means that to interrupt at a specific count in the future, one must add that
future time to the current value of the timer. So we have a function to do just
that. However, we don’t want single ticks as timer residues. It is problematic in
some MSP430 parts to set a timer compare register to one tick more than the
current timer value and make sure and get an interrupt in that one tick. So we
fudge an extra tick on those occasions where a delayed event request results in
a single tick in the lower part of the time value.

137 〈msp430 timer services 136〉+≡ (154) ⊳ 136 138 ⊲

#pragma type_attribute=__monitor

static void

setNextTime(

uint16_t clockTicks)

{

if (clockTicks == 1) {

++clockTicks ;

}

TACCR0 = readTimer() + clockTicks ;

sysTimerUnmask() ;

}

Uses uint16 t 138.

11 TI MSP430 SPECIFIC INTERFACES 138

There are two things to notice about this function. We use a pragma to
request the compiler to generate a critical section around the function, so that
the function executes with interrupts disabled and restores the interrupt state
appropriately. This is not because we are sharing a critical data section. Rather
it is to prevent an interrupt coming between when we read the timer and when
we get it set to a new value. We are performing a read / modify / write on
the value of Timer A CCR0 and do not want extraneous time to go by in the
service of an interrupt when we are trying hard just to get the timer register set
to a new value. Since the timer counts modulo 16 bits, then simply adding the
number of ticks to the current timer value, ignoring any overflow turns out to
be the right thing. If there is overflow, the timer compare register will match
the timer itself when it rolls over from 0.

The second thing to notice is that this function leaves the timer interrupt
itself unmasked. Nothing particularly unusual about that. Once the timer is
set to a value, we want to insure that we are notified when the time elapses.

Now we arrive at another complication in MSP430 timing. Timer A is only
16 bits long. With 4096 ticks per second, we can only time 16 seconds with the
timer. That is not sufficient range for delayed events. So we are forced to hold
remaining bits of the timer in memory and track its value via software. We
define a 16 bit value as the upper part of the timer as a variable.

138 〈msp430 timer services 136〉+≡ (154) ⊳ 137 139 ⊲

static uint16_t clockCnts ;

Defines:
uint16 t, used in chunks 136, 137, and 140b.

11 TI MSP430 SPECIFIC INTERFACES 139

Once we have decided to use Timer A and its Capture/Compare Register 0,
the initialization and control of the interrupt mask is straight forward.

139 〈msp430 timer services 136〉+≡ (154) ⊳ 138 140a ⊲

void

sysTimerInit(void)

{

/*

* Stop and Clear the timer.

*/

TACTL = TACLR ;

/*

* Set up clock source to ACLK and Divide down by 8.

*/

TACTL |= TASSEL_1 | ID_3 ;

TACCTL0 = 0 ;

TACCTL1 = 0 ;

TACCTL2 = 0 ;

/*

* Start the timer in continuous mode.

*/

TACTL |= MC_2 ;

}

void

sysTimerMask(void)

{

TACCTL0 &= ~CCIE ;

}

void

sysTimerUnmask(void)

{

TACCTL0 &= ~CCIFG ;

TACCTL0 |= CCIE ;

}

11 TI MSP430 SPECIFIC INTERFACES 140

Starting and stopping the timer must take account of the upper part of the
timer range that we are holding in a variable. To start the timer we put the
upper part of the time in the variable and the lower part in the timer.

140a 〈msp430 timer services 136〉+≡ (154) ⊳ 139 140b ⊲

void

sysTimerStart(

MechDelayTime ticks)

{

clockCnts = ticks >> 16 ;

setNextTime(ticks) ;

}

Uses MechDelayTime 41.

Stopping a timer has its own complications also. First we have to account
for the fact that since the timer and the processor run asynchronously, there is
a race condition associated with stopping the timer and reading the remaining
time. A simple check of the interrupt flag shows whether or not we lost the
race.

140b 〈msp430 timer services 136〉+≡ (154) ⊳ 140a 141 ⊲

MechDelayTime

sysTimerStop(void)

{

MechDelayTime remain ;

sysTimerMask() ;

uint16_t timer = readTimer() ;

/*

* Account that the timer might go off between when we

* stop it and when we read it.

*/

if (TACCTL0 & CCIFG) {

remain = clockCnts ?

(MechDelayTime)(clockCnts - 1) << 16 : 0 ;

} else {

remain = TACCR0 - timer ;

remain += (MechDelayTime)clockCnts << 16 ;

}

return remain ;

}

Uses MechDelayTime 41 and uint16 t 138.

11 TI MSP430 SPECIFIC INTERFACES 141

Finally, we need an interrupt service routine for the Timer A CCR0. On the
MSP430, this has its own interrupt vector. Other Timer A interrupt sources
share a different vector. The only complication here is to account for the upper
part of the virtual timer that is held in a variable. The total count was set up
so that the fraction was expired first and then all the whole 16 bit parts are
counted off. This works well since by far the most frequent delayed event times
fit in 16 bits worth of timer ticks.

Because of the way the MSP430 controls low power mode, it is necessary
for an interrupt service routine to explicitly request that low power mode be
off when the interrupt service routine finishes. Otherwise, the processor will go
right back to sleep. This is a bit different from other processors that usually
keep running after an interrupt occurs and software then puts it back to sleep.
In this case we use it to some advantage in that we only request exiting low
power mode in that case where we have expired the timer and not just counted
part of the time. Given that we have to hold part of the timer value in a variable,
this is convenient.

141 〈msp430 timer services 136〉+≡ (154) ⊳ 140b

#pragma vector=TIMERA0_VECTOR

__interrupt

void

timerA0ISR(void)

{

if (clockCnts == 0) {

MechDelayTime next = mechTimerExpireService() ;

if (next) {

sysTimerStart(next) ;

}

__low_power_mode_off_on_exit() ;

} else {

/*

* Loading the compare register with the timer

* value causes us to count an entire 16 bits worth

* of ticks.

*/

TACCR0 = TAR ;

--clockCnts ;

}

}

Uses MechDelayTime 41.

11 TI MSP430 SPECIFIC INTERFACES 142

11.3 MSP430 Async Execution Interface

The MSP430 has a very simple architecture. Unlike the Cortex-M3, there is no
exception level associated with executing sync functions. So it is only necessary
to queue to sync function.

142a 〈msp430 async interface 142a〉≡ (153) 142b ⊲

SyncParamRef

mechSyncRequest(

SyncFunc f)

{

return syncQueuePut(f, true) ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

The non-fatal version is also very simple to implement.

142b 〈msp430 async interface 142a〉+≡ (153) ⊳ 142a

SyncParamRef

mechTrySyncRequest(

SyncFunc f)

{

return syncQueuePut(f, false) ;

}

Uses SyncFunc 94b and SyncParamRef 94a.

11.4 MSP430 Suspending Execution

Applications will want to control the power mode, so we place the current power
mode in a variable. You might think we should put some function in to hide

the type of this variable, but that verges on overdone. If you really need fine
control over the power mode you will need to write quite a bit more code to
keep track of which peripherials are busy using which of the system clocks.

142c 〈msp430 suspend execution 142c〉≡ (153) 143a ⊲

unsigned char lowPowerMode = LPM0_bits ;

Defines:
lowPowerMode, used in chunk 143a.

11 TI MSP430 SPECIFIC INTERFACES 143

The MSP430 keeps the power mode bits right in the main status register
and power modes are entered or exited by direct manipulation of the contents of
status register. So to go to sleep, one simply sets the correct bits in the status
register, making sure that the general interrupt enable is also set. Otherwise,
there is no wake up from the sleep save a reset.

143a 〈msp430 suspend execution 142c〉+≡ (153) ⊳ 142c

MECH_TEST_STATIC

MECH_TEST_INLINE

void

mechWait(void)

{

beginCriticalSection() ;

if (syncQueueEmpty()) {

__bis_SR_register(lowPowerMode | GIE) ;

} else {

endCriticalSection() ;

}

}

Uses lowPowerMode 142c.

11.5 MSP430 Initialization

As a final quirk of the MSP430, we need to be aware of a couple of things for
initialization. Oddly enough, the watch dog timer is enabled after a reset. I
find it most convenient to turn it off, establish the operating environment and
then enable it. Also, you will need to adjust the system clock properly for
your application. The code provided assumes that the MSP430 part is new
enough to store calibrated clock values in flash. Your mileage will definitely
vary depending up which MSP430 part you are dealing with.

143b 〈msp430 external scoped functions 143b〉≡ (152)

extern void sysPlatformInit(void) ;

11 TI MSP430 SPECIFIC INTERFACES 144

144 〈msp430 initialization 144〉≡ (154)

void

sysPlatformInit(void)

{

/*

* Hold the watchdog timer.

*/

WDTCTL = WDT_ARST_1000 | WDTHOLD ;

IFG1 &= ~WDTIFG ;

/*

* Whack up the clock to 8 MHz using the

* calibration data from flash.

*/

DCOCTL = 0 ;

BCSCTL1 = CALBC1_8MHZ ;

DCOCTL = CALDCO_8MHZ ;

}

12 SOURCE CODE ORGANIZATION 145

12 Source Code Organization

This literate program can produce source code for three very different platforms.
Traditionally, this difference is handled by conditional compilation. The pro-
gram source is often littered with preprocessor statements and it is necessary
to define the correct symbols during compilation to get the desired source com-
piled. Unfortunately, the number of preprocessor statements can get large and
this makes the source much more difficult to read as you must decide which
statements the compiler will actually see. This situation can get even worse
when conditional compilation is used to account for compiler differences.

One can take the attitude that since this is a literate program, the appear-
ance of the source code derived from it is not important. That is the case up
to a point. The source code produced from this program has very little of the
documentation embedded in it that conventionally produced code might have.
But debugging is made that much worse when there is the clutter of extraneous
statements in the code. Besides there is something evil that preprocessing does
by changing the text that the compiler sees to be something different than what
the reader sees. Minimizing that is worthwhile.

Rather than use conditional compilation, we can use the literate program-
ming tools to produce as many source code files as we desire. So, there will be
several roots in this literate program, one for each platform and for each compiler
that is supported. We will use the naming convention of mech-<platform>-
<compiler>to name the root chunks that are meant for a particular plat-
form/compiler combination. Once the chunk is tangled its file may be renamed
as convenient. Note that this approach does not eliminate all the conditional
compilation directives. There are still some features that are included or ex-
cluded by conditional compilation, such as tracing, that are independent of the
platform and compiler.

It is convenient to keep track of the version of the literate program document
in the source code.

145 〈version info 145〉≡ (146 147 149 150 152–54)

/*

* THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT IT.

* This file corresponds to Version 1.5 of the STSA literate

* program.

*/

12 SOURCE CODE ORGANIZATION 146

12.1 POSIX Version

The posix version of the header file is named mechs-posix-gcc.h. We are only
supporting gcc as a compiler.

146 〈mechs-posix-gcc.h 146〉≡
〈version info 145〉
〈copyright 155〉
/*

〈conditional compilation 78〉
*/

#ifndef MECHS_H_

#define MECHS_H_

#include <stddef.h>

#include <stdint.h>

#include <stdbool.h>

#include <stdarg.h>

〈constants 11c〉
〈base types 11a〉
〈data types 10〉
〈posix data types 109a〉
〈event data types 24〉
〈external scoped functions 15〉
#ifdef MECH_SM_TRACE

〈trace data types 79〉
〈trace external functions 80b〉
#endif /* MECH_SM_TRACE */

〈posix external functions 107b〉
〈inline functions 38a〉
#ifdef MECH_TEST

〈external test functions 6〉
〈main loop components declaration 98c〉
#endif /* MECH_TEST */

#endif /* MECHS_H_ */

Defines:
MECHS H , never used.

12 SOURCE CODE ORGANIZATION 147

The POSIX code file is named mechs-posix-gcc.c. For this version, the
mechanisms can be compiled with:

gcc -std=gnu99 -g -O2 -c -o mechs.o mechs.c

147 〈mechs-posix-gcc.c 147〉≡
〈version info 145〉
〈copyright 155〉
#include <stdlib.h>

#include <stdarg.h>

#include <string.h>

#include <stdint.h>

#include <assert.h>

#ifndef MECH_NINCL_STDIO

include <stdio.h>

#endif /* MECH_NINCL_STDIO */

#include <signal.h>

#include <errno.h>

#include <sys/select.h>

#include <sys/time.h>

#include "mechs.h"

#define __WEAK __attribute__((weak))

〈conditional defines 98b〉
static void mechFatalError(MechErrorCode errNum, ...) ;

〈posix critical section 100a〉
〈error handling 87d〉
〈instance allocation helper 17〉
〈instance functions 14〉
〈event queues 26a〉
〈event generate 32a〉
static void sysTimerStart(MechDelayTime) ;

static MechDelayTime sysTimerStop(void) ;

〈delayed event helper 50〉
〈posix delayed event helper 102〉
〈delayed event queue 43〉
〈posix timer services 103〉
〈delayed event service 58〉
〈timer service 57b〉
#ifdef MECH_SM_TRACE

〈event tracing 81〉
#endif /* MECH_SM_TRACE */

〈event dispatch 59〉
〈fgsync data types 94c〉
〈sync queue 94e〉
〈sync queue func 95a〉
〈posix async interface 106c〉
〈posix io data 111a〉

12 SOURCE CODE ORGANIZATION 148

〈posix io interface 113〉
〈posix suspend execution 116〉
〈posix initialization 118〉
〈initialization 97c〉
〈main loop sync components 99a〉
〈main loop components 99c〉
〈main loop 7〉

Defines:
WEAK, used in chunks 123, 128b, and 132.

Uses MechDelayTime 41 and MechErrorCode 86.

12 SOURCE CODE ORGANIZATION 149

12.2 Cortex-M3 Version

The Cortex-M3 version of the code is built and tested using the CodeSourcery
builds of gcc for ARM processors. So the header file is named mechs-cm3-gcc.h.

149 〈mechs-cm3-gcc.h 149〉≡
〈version info 145〉
〈copyright 155〉
/*

〈conditional compilation 78〉
〈cm3 conditional compilation 120b〉
*/

#ifndef MECHS_H_

#define MECHS_H_

#include <stddef.h>

#include <stdint.h>

#include <stdbool.h>

#include <stdarg.h>

#ifdef __GNUC__

#define __WEAK __attribute__((weak))

#endif /* __GNUC__ */

〈constants 11c〉
〈base types 11a〉
〈data types 10〉
〈event data types 24〉
〈external scoped functions 15〉
〈cortex-m3 external scoped functions 131〉
〈cortex-m3 timing declarations 122b〉
〈cortex-m3 power declarations 128a〉
#ifdef MECH_SM_TRACE

〈trace data types 79〉
〈trace external functions 80b〉
#endif /* MECH_SM_TRACE */

〈inline functions 38a〉
#ifdef MECH_TEST

〈external test functions 6〉
〈main loop components declaration 98c〉
#endif /* MECH_TEST */

#endif /* MECHS_H_ */

Defines:
WEAK, used in chunks 123, 128b, and 132.

MECHS H , never used.

12 SOURCE CODE ORGANIZATION 150

The code file for the Cortex-M3 version is named mechs-cm3-gcc.c.

150 〈mechs-cm3-gcc.c 150〉≡
〈version info 145〉
〈copyright 155〉
#include <stdlib.h>

#include <stdarg.h>

#include <string.h>

#include <stdint.h>

#include <assert.h>

#ifndef MECH_NINCL_STDIO

include <stdio.h>

#endif /* MECH_NINCL_STDIO */

typedef enum IRQn {

/****** Cortex-M3 Processor Exceptions Numbers **********/

NonMaskableInt_IRQn = -14, /* 2 Non Maskable */

HardFault_IRQn = -13, /* 3 Hard Fault */

MemoryManagement_IRQn = -12, /* 4 Memory Management */

BusFault_IRQn = -11, /* 5 Bus Fault */

UsageFault_IRQn = -10, /* 6 Usage Fault */

SVCall_IRQn = -5, /* 11 SV Call */

DebugMonitor_IRQn = -4, /* 12 Debug Monitor */

PendSV_IRQn = -2, /* 14 Pend SV */

SysTick_IRQn = -1, /* 15 System Tick */

} IRQn_Type ;

#include "core_cm3.h"

#include "mechs.h"

〈conditional defines 98b〉
〈cortex-m3 critical section 119〉
〈error handling 87d〉
〈instance allocation helper 17〉
〈instance functions 14〉
〈event queues 26a〉
〈event generate 32a〉
〈delayed event helper 50〉
〈cortex-m3 delayed event helper 121b〉
〈delayed event queue 43〉
#ifdef CM3_USE_SYSTICK

〈cortex-m3 timer services 123〉
#endif /* CM3_USE_SYSTICK */

〈delayed event service 58〉
〈timer service 57b〉
#ifdef MECH_SM_TRACE

〈event tracing 81〉
#endif /* MECH_SM_TRACE */

〈event dispatch 59〉

12 SOURCE CODE ORGANIZATION 151

〈fgsync data types 94c〉
〈sync queue 94e〉
〈sync queue func 95a〉
〈cortex-m3 async interface 126a〉
〈cortex-m3 suspend execution 129〉
〈cortex-m3 initialization 132〉
〈cortex-m3 power management 128b〉
〈initialization 97c〉
〈cortex-m3 main loop components 127b〉
〈main loop 7〉

Defines:
IRQn Type, never used.

12 SOURCE CODE ORGANIZATION 152

12.3 MSP430 Version

The MSP430 version of the code is built and tested using the IAR Embedded
Workbench for the MSP430. So the header file is named mechs-msp430-iar.h.

152 〈mechs-msp430-iar.h 152〉≡
〈version info 145〉
〈copyright 155〉
/*

〈conditional compilation 78〉
〈msp430 conditional compilation 134a〉
*/

#ifndef MECHS_H_

#define MECHS_H_

#include <stddef.h>

#include <stdint.h>

#include <stdbool.h>

#include <stdarg.h>

#define __WEAK

〈constants 11c〉
〈base types 11a〉
〈data types 10〉
〈event data types 24〉
〈external scoped functions 15〉
〈msp430 external scoped functions 143b〉
〈msp430 timing declarations 135b〉
#ifdef MECH_SM_TRACE

〈trace data types 79〉
〈trace external functions 80b〉
#endif /* MECH_SM_TRACE */

〈inline functions 38a〉
#ifdef MECH_TEST

〈external test functions 6〉
〈main loop components declaration 98c〉
#endif /* MECH_TEST */

#endif /* MECHS_H_ */

Defines:
WEAK, used in chunks 123, 128b, and 132.

MECHS H , never used.

12 SOURCE CODE ORGANIZATION 153

The code file for the MSP430 version is named mechs-msp430-iar.c.

153 〈mechs-msp430-iar.c 153〉≡
〈version info 145〉
〈copyright 155〉
#include <stdlib.h>

#include <stdarg.h>

#include <string.h>

#include <stdint.h>

#include <assert.h>

#ifndef MECH_NINCL_STDIO

include <stdio.h>

#endif /* MECH_NINCL_STDIO */

#include "msp430.h"

#include "mechs.h"

〈conditional defines 98b〉
〈msp430 critical section 133〉
〈error handling 87d〉
〈instance allocation helper 17〉
〈instance functions 14〉
〈event queues 26a〉
〈event generate 32a〉
〈delayed event helper 50〉
〈msp430 delayed event helper 134b〉
〈delayed event queue 43〉
〈delayed event service 58〉
〈timer service 57b〉
#ifdef MECH_SM_TRACE

〈event tracing 81〉
#endif /* MECH_SM_TRACE */

〈event dispatch 59〉
〈fgsync data types 94c〉
〈sync queue 94e〉
〈sync queue func 95a〉
〈msp430 async interface 142a〉
〈msp430 suspend execution 142c〉
〈initialization 97c〉
〈main loop sync components 99a〉
〈main loop components 99c〉
〈main loop 7〉

12 SOURCE CODE ORGANIZATION 154

For the MSP430, we split out the timer and other platform specific code into
a separate file. This code is most sensitive to change for a particular system
peripheral usage. The platform specific code file for the MSP430 version is
named platform-msp430-iar.c.

154 〈platform-msp430-iar.c 154〉≡
〈version info 145〉
〈copyright 155〉
#include <stddef.h>

#include "msp430.h"

#include "mechs.h"

〈msp430 timer services 136〉
〈msp430 initialization 144〉

13 COPYRIGHT 155

13 Copyright

Since this paper is a literate program, the software that may be extracted from
its source is subject to the following copyright and license.

155 〈copyright 155〉≡ (146 147 149 150 152–54)

/*

* This software is copyrighted 2007 - 2011 by G. Andrew

* Mangogna. The following terms apply to all files associated

* with the software unless explicitly disclaimed in individual

* files.

*

* The authors hereby grant permission to use, copy, modify,

* distribute, and license this software and its documentation

* for any purpose, provided that existing copyright notices

* are retained in all copies and that this notice is included

* verbatim in any distributions. No written agreement, license,

* or royalty fee is required for any of the authorized uses.

* Modifications to this software may be copyrighted by their

* authors and need not follow the licensing terms described here,

* provided that the new terms are clearly indicated on the first

* page of each file where they apply.

*

* IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE

* TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

* CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE,

* ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE

* AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

* AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"

* BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION

* TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

* OR MODIFICATIONS.

*

* GOVERNMENT USE: If you are acquiring this software on behalf of

* the U.S. government, the Government shall have only "Restricted

* Rights" in the software and related documentation as defined in

* the Federal Acquisition Regulations (FARs) in Clause 52.227.19

* (c) (2). If you are acquiring the software on behalf of the

* Department of Defense, the software shall be classified as

* "Commercial Computer Software" and the Government shall have

* only "Restricted Rights" as defined in Clause 252.227-7013 (c)

* (1) of DFARs. Notwithstanding the foregoing, the authors

* grant the U.S. Government and others acting in its behalf

13 COPYRIGHT 156

* permission to use and distribute the software in accordance

* with the terms specified in this license.

*/

14 INDEX 157

14 Index

〈background sync 8〉
〈base types 11a〉
〈cm3 conditional compilation 120b〉
〈conditional compilation 78〉
〈conditional defines 98b〉
〈constants 11c〉
〈copyright 155〉
〈cortex-m3 async interface 126a〉
〈cortex-m3 critical section 119〉
〈cortex-m3 delayed event helper 121b〉
〈cortex-m3 external scoped functions 131〉
〈cortex-m3 initialization 132〉
〈cortex-m3 main loop components 127b〉
〈cortex-m3 power declarations 128a〉
〈cortex-m3 power management 128b〉
〈cortex-m3 suspend execution 129〉
〈cortex-m3 timer services 123〉
〈cortex-m3 timing declarations 122b〉
〈data types 10〉
〈delayed event helper 50〉
〈delayed event queue 43〉
〈delayed event service 58〉
〈error handling 87d〉
〈event data types 24〉
〈event dispatch 59〉
〈event generate 32a〉
〈event queues 26a〉
〈event tracing 81〉
〈external scoped functions 15〉
〈external test functions 6〉
〈fgsync data types 94c〉
〈initialization 97c〉
〈inline functions 38a〉
〈instance allocation helper 17〉
〈instance functions 14〉
〈main loop 7〉
〈main loop components 99c〉
〈main loop components declaration 98c〉
〈main loop sync components 99a〉
〈mechs-cm3-gcc.c 150〉
〈mechs-cm3-gcc.h 149〉
〈mechs-msp430-iar.c 153〉
〈mechs-msp430-iar.h 152〉

14 INDEX 158

〈mechs-posix-gcc.c 147〉
〈mechs-posix-gcc.h 146〉
〈msp430 async interface 142a〉
〈msp430 conditional compilation 134a〉
〈msp430 critical section 133〉
〈msp430 delayed event helper 134b〉
〈msp430 external scoped functions 143b〉
〈msp430 initialization 144〉
〈msp430 suspend execution 142c〉
〈msp430 timer services 136〉
〈msp430 timing declarations 135b〉
〈platform-msp430-iar.c 154〉
〈posix async interface 106c〉
〈posix critical section 100a〉
〈posix data types 109a〉
〈posix delayed event helper 102〉
〈posix external functions 107b〉
〈posix initialization 118〉
〈posix io data 111a〉
〈posix io interface 113〉
〈posix suspend execution 116〉
〈posix timer services 103〉
〈sync queue 94e〉
〈sync queue func 95a〉
〈timer service 57b〉
〈trace data types 79〉
〈trace external functions 80b〉
〈version info 145〉

WEAK: 123, 128b, 132, 147, 149, 152
AttributeOffset: 70c, 71
delayedEventQueue: 29b, 30, 43, 47, 49, 51, 52, 54, 55, 57b
errHandler: 87d, 88
errMsgs: 88
EventParamType: 23a, 24, 93c
eventQueue: 29b, 30, 36b, 37, 47, 55, 58, 99c, 127b, 129
expiredEventQueue: 29b, 30, 47, 55, 57b, 58
fd set: 112b, 112b, 112b, 116
FDServiceFunc: 109a, 109b, 111a, 113
FDServiceMap: 111a, 113, 114, 116
FgSyncBlock: 94c, 94d, 95b, 96, 99a, 127a
freeEventQueue: 29b, 30, 31a, 31b, 90b
inline: 17, 18a, 26a, 26b, 27a, 27b, 27c, 28a, 31a, 32a, 35b, 38a, 38b, 38c, 39,
45, 46a, 55, 82, 83, 84, 95a, 95b, 96, 98b, 100b, 101a, 101b, 102, 102, 119,
120a, 120a, 122a, 122a, 133, 133, 133, 135a, 135a, 136

InstAllocBlock: 13, 14, 16, 17, 18a, 19, 77b

14 INDEX 159

InstCtor: 12, 13
InstDtor: 12, 13
IRQn Type: 150
lowPowerMode: 142c, 143a
MECH DISPATCH CREATION STATE: 76, 77a
MECH MAX CLOCK TICKS: 121b, 122a, 134b, 135a
MECH MAX MSEC DELAY: 121b, 122a, 134b, 135a
MECH STATECODE CH: 11c, 63
MECH STATECODE IG: 11c, 63
MechDelayTime: 24, 41, 42, 43, 45, 46a, 48, 49, 55, 57a, 57b, 102, 104, 105,
106a, 122a, 122b, 123, 135a, 135b, 140a, 140b, 141, 147

MechEcb: 24, 26a, 26b, 27a, 27b, 27c, 28a, 30, 31a, 31b, 32a, 32b, 33a, 33b,
34a, 34b, 35a, 35b, 36a, 36b, 36c, 37, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55,
57b, 59, 60a, 60b, 63, 73, 76, 99c, 127b

mechECBPool: 29a, 30
MechErrorCode: 86, 88, 147
MechEventType: 21, 24, 32a, 72a, 79, 83
MechFatalErrHandler: 87b, 87c, 87d
mechFDServicePool: 111b, 113, 114, 116
MechInstance: 10, 12, 14, 15, 16, 18b, 19, 24, 32a, 32b, 33a, 33b, 34a, 34b,
35a, 38a, 38b, 38c, 39, 45, 46a, 46b, 47, 48, 49, 50, 63, 73, 76, 82, 83, 84

mechMaxFD: 112a, 113, 114, 116
MECHS H : 146, 149, 152
mechSyncQueue: 94e, 95a, 95b, 96
MechTraceCallback: 80a, 80b, 81
MechTraceInfo: 79, 80a
PolyStorageType: 70a, 71
PtrActionFunction: 61, 62b, 63
SignalFunc: 107b, 108
sigset t: 100a, 103, 116
SyncFunc: 92, 93a, 94b, 94c, 95b, 106c, 107a, 126a, 126b, 142a, 142b
SyncParamRef: 58, 92, 93a, 94a, 94b, 95b, 106c, 107a, 126a, 126b, 142a, 142b
SyncParamType: 93c, 94a, 94c
traceCallback: 81, 82, 83, 84
uint16 t: 136, 137, 138, 140b
uint8 t: 11a, 11b, 23b, 23c, 62a, 70b, 136

REFERENCES 160

References

[1] Stephen J. Mellor and Marc J. Balcer. Executable UML: a foundation for

model-driven architecture. Addison-Wesley, 2002.

[2] Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian Wilkie.
Model Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[3] Sally Shlaer and Stephen J. Mellor. Object Oriented Systems Analysis: Mod-

eling the World in Data. Prentice-Hall, 1988.

[4] Sally Shlaer and Stephen J. Mellor. Object Oriented Systems Analysis: Mod-

eling the World in States. Prentice-Hall, 1992.

[5] Leon Starr. How to Build Shlaer-Mellor Object Models. Yourdon Press,
1996.

[6] Joseph Yiu. The Definitive Guide to the ARM Cortex-M3. Elsevier, 2007.

